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PREFACE

Contract F 49620-77-0130 of the Air Force Office of

Scientific Research, beginning September 1, 1977, was specifically

directed toward solving problems of elastic and viscoelastic wave

scattering and diffraction with applications to the silo and its

related problems.

The Contract has been successfully executed at the Aldridge

Laboratory of Applied Geophysics. This Final Report reflects the

accomplishments of the Contract, including doctoral dissertations

to be published and unpublished papers.

I am grateful to Mr. William Best of the Air Force Office

of Scientific Research for monitoring the contract, and Drs. Ker

Thomson, Gerry Cabaniss, and Frank Crowley for their interest in

the project. I wish to acknowledge Ms. Linda Ripps, who typed this

report most patiently.

John T. Kuo
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GENERAL INTRODUCTION

Under the Air Force Contract, AF-49620-77-C-0130, "Elastic

and Viscoelastic Wave Scattering and Diffractions," the main

objective of the research was to study the problem of two- and

three-dimensional wave scattering and diffraction in elastodynamics

and viscoelastodynamics. Presently available analytical techniques

for solving wave propagation problems are useful only for simple

cases. In practice, the presence of inhomogeneities and irregular

boundary conditions defies analytical solutions. One of the best

numerical techniques suitable for solving wave propagation in a
I

complex geological medium, such as the problem of the ground response

to seismic disturbances in alluvial valleys, is the method of com-

bining the finite element method (FEM) in space and the finite

differences method (FDM) in time. The advantages of using the finite

element method in space are:

(1) allowing for almost any type of static, dynamic, and thermal

*loading to be applied.

(2) relatively easy to apply boundary conditions.

(3) its flexibility in modeling irregular geology and topography.

(4) its distribution of errors, which are averaged over the elements

throughout the domain in question.

The advantage of using the explicit finite differences method in time

integration is that solutions so obtained are generally conditionally

stable, and fast convergent to yield solutions which are only simple

products and vector additions.

£ii
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However, the physical insight to the scattering and diffraction

phenomena only can be gained through analytical approaches or

physical modeling studies; the interpretation of the numerical solu-

tions must base on the fundamen-al understanding of the scattering and

diffraction phenomena. Therefore, our approaches to solving the com-

plex scattering and diffraction problems have been oriented toward:

(1) to solve practical problems by numerical methods.

(2) to gain insight to the numerical solutions to practical problems

by analytical and physical modeling studies.

As for the numerical methods, we emphasize the research on the finite

element formulation and computer programming. We have completed the

finite element algorithm for transient elastic and viscoelastic wave

scattering and diffraction problems in two and thrL3 dimensions and,.

as a by-product, the finite element elastostatic algorithm for static

and quasistatic loading problems.

So far as the effect of damping on the elastic wave propo-

gation is concerned, the computer codes for the two- and three-dimen-

sional Rayleigh type of damping have been written and successfully

tested. However, these original computer codes have followed the

conventional "block-by-block" format that require an enormously large

in-core storage and a large amount of computing time for solving geo-

logically practical problems.

Therefore, we have also been working on the areas of:

(1) overcome the practical difficulties of using large in-core storage.

(2) sparse matrix without calculating zero-matrix elements to save the

computing time.

S iii
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(3) the basic problem of convergence and stability to obtain a good

solution without taking more computing time than actually re-

quired.

(4) the undesirable reflections from the artificial boundaries.

The finite element algorithm for elastic waves has been

successfully applied to solve the problem of the transient seismic

response of an elastic whole-space, an elastic half-space, and a

layered elastic half-space due to a finite cylindrical cavity source.

Only by a considerable reduction of in-core storage and

saving of computing time would it be possible to perform an extensive

parameter-s y of more realistic geological problems as shown in

Figure 1.

In the area of analytical studies, we have been exploring

one of the most attractive analytical methods, i.e. the high-order

perturbation method. The existence of two different types of elastic

waves, viz. compressional and shear waves in elastodynamic boundary

value problems, has frustrated many investigators to solve more

realistic problems. In the perturbation method, we are able to replace

the two different wave numbers for P-wave and S-wave by their root-

mean-square (RMS) values so that there will be only one single wave

number involved. The previous RMS perturbation solutions developed by

Pao and Thau (1967) are only up to the order of two. We have now

extended the method to the higher-order solutions, through the general

recurrence formulas. Moreover, we have applied the newly developed

perturbation method to solve one of the long-standing elastodynamic

wedge problems and obtained very encouraging results. In order to

iv
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gain further insight to wave scattering and diffraction problems,

*three-dimensional physical model experiments have been performed

at the Aldridge Laboratory of Applied Geophysics to study the

acoustic-elastic wave scattering and diffraction by a vertical

elastic cylinder immersed in a fluid due to a transient acoustic

point source.

Physical insight into these problems, both analytically

and experimentally, has been invaluable in interpretation of the

finite element results.

vi
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I. FINITE ELEMENT FORMULATION AND COMPUTER PROGRAMS

FOR ELASTIC AND VISCOELASTIC WAVE SCATTERING j
AND DIFFRACTION PROBLEMS

II



ABSTRACT

*
The three-dimensional finite element for both elastic and

viscoelastic wave scattering and diffraction, based on the principle

of virtual work,has now been completed for solving transient elasto-

and viscoelasto-dynamic problems, as well as elasto- and viscoelasto-

static problems. Computer programs for the finite element formula-

tion are developed and tested.

The conventional "block-by-block" format used in the computer

programs has been improved in order to save the in-core storage and

computer time. Stability condition and convergence criteria of the

finite element in space and the finite differences in time have been

examined. The computer programs developed under the Contract are

now ready and have been submitted to AFGL for their use.

1i



* FINITE ELEMENT FORMULATION

Based on the principle of virtual work, we have now

completed the three-dimensional finite element formulation for

viscoelastic wave scattering and diffraction to complement that

for elastic wave scattering and diffraction due to a transient

seismic disturbance, as reported in the Final Report of an earlier

contract AFOSR-76-2968, "Numerical and Analytical Solutions to

Elastodynamic Problems". The general procedure for using the finite

element method in solving elastodynamic problems in coi.tinuum mechanics

includes idealization of the problem, space discretization of finite

elements, and formulation of the set of simultaneous equations to be

solved. For viscoelastic waves, the equations of motion for elasto-

dynamics must include a term to account for energy dissipation.

Usually this mechanism takes the form of viscous damping, which is

linearly proportional to velocity. Hence, the equations of motion

for viscoelastodynamics are:

(i) [m]{u} + [c] {u} + [k] tu} = {f(t)}

where {u}, {a}, ju} are the displacement, velocity and acceleration

vectors of the finite element assemblage, and

[m] = the assembled mass matrix.

[c] = the viscous damping matrix.

[k] - the assembled structural stiffness matrix. *

{f(t)} - the external time-dependent vector load vector.

*, 2

..



It is obvious that equation (1) reduces to the equations

of motion for elastodynamics as [C] = 0. Equation (l) states that,

in principle, static equilibrium at time t, which includes the

effects of inertia force, elastic force and damping force, is

reached. While in static analysis, one simply neglects the inertia

and damping effects in equation (1).

The free vibration equilibrium equation for the undamped

system is well-known as follows:

(2) [m] {u} + [k] {u} 0

Assume that

(3) {u} = { } T(t)

where

(4) T(t) =A sin w t + B cos w t

{#} = time dependent shape vector, and

A and B = arbitrary constants. Differentiating equation (3)

twice with respect to time t, we have

(5) (u} = {} } T(t) = - 2 { } T(t)

3
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Equation (2) yields

(6) ([k] - w2 [m]) { } = 0

In order to have a non-trivial solution to this equation, the

following condition must be satisfied

(7) I [k) - w2 [m] =p(w2 ) =0

This leads to the classical eigenvalue problem. The solution to

this equation is w=w , n=1,2,3 ......., N in which N is the numbern

of the modes. w are the natural angular frequencies of then

system. The shape vector function {f} can be obtained by solving

equation (6) for each value of w, giving

(8) [k] {n} = 2 [m] {n}
n n n

for the n-th mode of vibration.

Superposition of the response for all modes gives

N

(9) {U} = ( {n } {Tn(t)} = [D] {T(t)}
n n

where the n-th column in(] contains the shape vector { n}
n

Substituting equation (9) into (1), we have

I.

(10) in] [?'] fT} + Cc] f?'] {M} + [k] [ l (TI = {f(t)I

4
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Premultiplying equation (10) by [4]T, we have

(11) [ ] [ml [1] {T} + [] [c [C] 1 {T} + [1T [k] [¢1

[(]T if(t)} = {F(t)}

The Orthogonality conditions are:

{mT [in] { }o =

(12) [k] %1=0 if m ; n

10m }T [k] {o n}  0

Caughey (1960) pointed out that:

a) Equation (11) will be decoupled if, and only if, [] T[c] [D] is

diagonal,

b) if [ ]T[c] [4] is diagonal, the damped system will have normal

modes, which are identical with those for the undamped system, and

c) if a damping matrix [C]=[]T Ic] [D] has the form

N-i 1 b

(13) [C] = [M E ab ([M] - I [K])
b=0

the damped system will have classical normal modes.

Now, if the damping matrix also satisfies

(14) fom } T [c] {n} = 0 for m 4 n

and equation (11) becomes

(15) MT n  + CT +K T = qn(t)

5



where

T
= { } [m]{n}

(16) Cn ={n
T [c{n

n= )T [k]{on }

Since Mn , Cn, Kn are scalars, equation (1) is decoupled to N linear

equations. Each of these equations represents the equation of motion

of a single-degree-of-freedom system. The damping constant can be

so chosen that

(17 C=2A nm

(17) Cn n n

(18) wn V (KniMn

where X = the damping ratio for the n-th mode.
n

Wnthe natural angular frequency for the n-th mode. Then, the

damping ratio in each mode, X can be related to the natural angularn

frequency of that mode by

1 N-I 2b-1

(19) = - Z ab wn%n 2 b=0

In equation (13), if N=2,

(20) [C] a a [M] + a1  [K]

6



This form was first proposed by Rayleigh. Equation (19) becomes

1 a
(21) A +a(- + W 

n 2 W n 1 nf

Therefore, Rayleigh damping can be considered as a special case of

Caughey damping. The constants a0 and a can be determined by any

two arbitrary conditions. If these two conditions are so chosen

that the damping ratios are specified for the first two modes, then

2(w 2 x1 - iA 2 )
(22) a =

O 1

-W /W2

A 2  - I/,, 2

2( 2/w1 -l/2

(23) a I  = ( 2 11

(2/ 1 -l/ 2 )

The procedure described above involves the calculation of the

frequencies for the first two modes.

Another procedure for determining the values of a0 and a1

is to specify the damping ratio at the frequency for which the damping

is a minimum, usually the fundamental frequency of the system. Then

we have

(24) a =
0

(25) a, = /

7



Solving the eigenvalue of the equation

(7) 1 [k] - LL2 [in] I=p(w 2 ) 0

is equvalent to calculating the roots of the polynomial p(w2 ), which

has the order equal to the order of [k] and [M] that are usually a

very large number. Therefore, an iteration solution method has to be

used. The time integration scheme with damping effect then is

(26) {u(t+At)l {u(t)} + {iI(t)}6t

(27) (uttt}={u(t)} - [MI -1 [K] {u(t+At)}At r

-[M] [C] {u t) }At + [M] {F(t)} At

g 8
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TEST

Based on the foregoinq formulation, we have developed the

computer programs. As an initial test of our three-dimensional program,

we have studied the problem of wave propagation in a viscoelastic

I
rectangular bar with one end of the bar fixed. The free end of the

bar is subjected to a uniform external force load. The simulated

forcing function is that of the sinusoidal type, using a four time-

step of increasing (or decreasing) time. The maximum of the magnitude

10for the forcing function for the test case is 10 dynes. In this

test problem, we used only 20 hexahedron elements. Use of symmetry

is made to reduce the size of the problem and the boundary displace-

ments are prescribed in a manner shown in Figure 2. The elastic

constants used are: Poisson's ratio = 0.25, Young's Modulus = 4.5xi0
1 0

2dynes/cm2 . The dynamic damping behavior of unconsolidated earth

materials primarily depend on the parameter of damping ratio Xn,

which must be determined by in-situ experimental measurements. On

the basis of spectral studies of the damping behavior of unconsolidated

earth materials, the U.S. Atomic Energy Commission Regulatory Guide,

Directorate of Regulatory Standards indicates that the reasonable

values of parameter Xn are approximately in the range of 0.005 to 0.1.

Figures 3 and 4 show the displacement-component responses on the

surface of the bar, the observation point is located at the nodal point

( 9



of 71 as shown in Figure 2, for the three cases:

(i) Response without damping.

(ii) Response with a damping ratio X1 = 0.02.

(iii) Response with a damping ratio X, = 0.05.

The responses of Ux and Uy are exactly the same due to symmetry.

In Figures 3 and 4, the magnitudes of Ux (or Uy) and Uz are drastically

reduced for both the cases of X = 0.05 and = 0.02. In this particu-

lar example, there is a slight phase change in Ux (or Uy) component,

while the phase change in the Uz component is apparent.

4z
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MODIFYING ELASTODYSTATIC AND ELASTODYNAMIC

FINITE ELEMENT COMPUTER PROGRAMS FOR

REDUCING THE IN-CORE STORAGE

As we mentioned before, our original finite element computer

programs have been developed in the conventional "block-by-block"

format so that a large in-core storage for the global stiffness

matrix was required and a large amount of computing time was also re-

quired. If we use the "block-by-block" format, it is a formidable

task to handle even a small practical problem of a more realistic

geological structure by the present art of the largest digital

computers now available.

In the past year, we have substantially modified our three-

dimensional elastodynamic and elastostatic computer programs for

solving more realistic geological problems. We have overcome many

serious difficulties of the finite element method for both elasto-

dynamic and elastostatic problems.

(A) Elastodynamics

The final form of the finite elemert formu '7ion of the

equations of motion in elastodynamics is

(28) (S]{u} + (K] u} = {F(t)}

A Gaussian elimination algorithm is generally used to solve a

discrete system of equations. However, matrices (K] and (M] must

be in-core stored in the calculation that creates stringent limitation

II14



on the total number of equations to be solved.
Because the matrix [K] is usually sparse, a special ordering

of the nodal points can produce a matrix [K], which is tightly

banded about the main diagonal. In our original version of the

Aldridge Finite Element Algorithm (AFEA), we used the conventional

"block-by-block" format with the number of equations per block

known, the stiffness matrix is assembled in one block at a time and

1is stored on the scratch disk. This "block-by-block" computer

program requires (2B, B) words in-core for [K], where B is the

half-band width. For example, for a three-dimensional 50x5)x50

element structure, we would have to solve some 397,953 simultaneous

equations for the assembly stiffness matrix with a half-band width

of B=7959, and an in-core storage of 2x7959x7959x4=506,766 kilobytes.

The ban !ed and blocked character of [K] is as shown in Figure 5.

The assembly mass matrix of the structure is formulated by lumping

the weighted element masses at the nodal points of the elements.

The mass of an element is weighted-distributed to the nodal points.

In the present modified version of AFEA, taking the advantage of

using the lumped mass matrix, and the finite differences time inte-

gration, we thus avoid the conventional Gaussian elimination

algorithm. Instead, we solve the following equations,

(29) {u(t+ At)}N = {u(t)}N + ({u(t)}At)N

(30) {i(t+ at) = {u(t)} + ( [MI- [K]{u(t+6t) )
-1

+ ( [M] {F(t)} At) N

15



where N = the total number of equations.

* We operate only on the product ( [M] [K] {u(t+ .t)}

Thus, we need only "N" words in-core, no matter how large the half-

band width B may be. Figure 6 shows a comparison of the in-core

storage for the global stiffness matrix required between the original

and present modified versions cf AFEA.

Additionally, the present modified AFEA codes save accounting

time, since only the non-zero matrix elements in [K] are calculated.

The blocked matrix [K] is sparse. The larger is the half-band width

B, the more sparse the blocked [K] matrix will be. In the three-dimen-

sional case, the maximum non-zero elements in each row are 81 for

hexahedron elements. In two-dimensional case, the maximum non-zero

elements in each row are 18 for quadrilaceral elements. In other

words, there are (7959-81) zero matrix elements in each row for the

50x50x50 element-structure. Therefore, in using the present modified

AFEA, the computing time can be reduced for solving larger element-

structures without the increasing I/O time. Table I gives the com-

parison of the accounting time for the original and present modified

versions of AFEA in solving both two-dimensional and three-dimensional

elastodynamic problems on an IBM 360/91.

As our first example, in using the modified three-dimensional

elastodynamic program of AFEA, we studied the classic Lamb's problem,

i.e., the problem of a homogeneous, isotropic, elastic half-space,

subjected to an external vertical force on the free surface, which

is assumed to be a bell-shaped function. In this test problem, we

used 12 hexahedron elements in each dimension (Figure 7). Use of

i6
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synetry is made to reduce the size of the problem. The symmetric

boundary conditions in Figure 7 are:

U =0 on OBDCx

U =0 on OBFE

In addition we used Smith's technique (1974) to eliminate the single

boundary reflections by superimposing the solutions of free-artifi-

cial-boundaries and rigid-artificial-boundaries problems. Although

the technique fails, when multi-reflections occur at the same

n
boundary, and has the disadvantage of requiring 2 solutions for the

n number of non-reflecting boundaries, we prefer this method at

present because it offers the advantages of perfect elimination, i.e.

independent of both incident angle and frequency. The Smith's

technique is particularly advantageous for three-dimensional finite

element problems since the number of elements required is reduced

by 8. Figure 8 shows the superposition of the solutions of the

free and boundary problems. Figure 9 shows the comparison of the

finite element and the analytical solutions. The test results are

highly accurate with the displacement component being within about

2 % of the analytical value.

(B) Elastostatic Case

For the elastostatic case, a conventional Gaussian elimination

23
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is needed. In the new version of AFEA, we developed a small band

solver that can be used with tape-storage to solve a large system

of linear equations. Instead of requiring the in-core storage of

(2B, B) words for [K] in the orginal version, the required in-core

storage now for [K] reduces to (2 x NF, B) words where NF is the

numbers of degree freedom, that is, an in-core storage of (6, B)

words for the three-dimensional case and of (4, B) words for the

* two-dimensional case. Figure 10 gives a comparison of the in-core

storage for the global stiffness matrix required in the original

and new modified versions. It is expected that the large number

of calls to tape requires a large amount of I/O time.

624



IL

t2

10,000 - - fo______r 2-D & 3-:.

0

E-4

z6
<

C..

p- (New Version
f or 2D

1000

o --- ~. __________

200 4~j 00 6U Bo UU L/UU 1400
- B (H~alf-band Width)

Figure 10. Comparison of the Original and the Modified

Versions for In-core Storage (Global Stiffness Matrix).

25



STABILITY CONDITION AND CONVERGENCE CRITERIA

OF THE FINITE ELEMENT IN SPACE AND

THE FINITE DIFFERENCES IN TIME

Ever since the finite element method emerged in various

branches of engineering and physics, many investigators have

attempted to establish the convergence criteria and the stability

condition techniques for the FEM in space and the FDM in time.

Based on the principle of virtual work, the FEM involves

the whole region of interest, which is discretized into a finite

number of subregions. The accuracy of the analysis depends mainly

on the number of elements used, and on the nature of the assumed

displacement functions with the elements. The accuracy of analysis

can be increased by using more elements in the representation of

the structure provided that the elements satisfy certain conver-

gence criteria, that is, the elements must be complete and com-

patible.

Whether a specific element is complete and compatible

depends on the formulation that must be studied individually. The

aim in the numerical integration of the finite element system equi-

librium is to evaluate a good approximation to the actual dynamic

response of the structure under consideration. The choosing time

step must correspond to the smallest period in the system which

could mean very small time steps.

In the AFEA, i.e., finite element in space and finite differ-

ences in time, we found that the elements of 4CST (four constant

26
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strain triangles) for two-dimensional cases and 5CST (five constant

strain tetrahedra) for three-dimensional cases in space integration

are complete and compatible, and central differences of time steps

in time integration are adequate. It follows that the element size

Ax, Ay, or Az in comparison with the wavelength of wave propagation

plays a crucial role in convergence. As in time integration, the

number of operations required is directly proportional to the number

of time steps required for the solution. The selection of an appro-

priate time step At in time integration is of great importance in

obtaining a stable solution. On one hand, the finite element size

and the time step must be small enough to obtain a stable solution,

and, on the other hand, the element size must not be smaller than

necessary, because this would mean that the computation is more

costly and requires more in-core storage than actually needed.

Choosing a time step smaller than necessary not only increases the

cost of calculation; it also causes an inaccurate result. A common

mistake is choosing a coarse grid of elements and a small time

step. We have tested the convergence criteria and stability condition

by using one of our computer program codes for the two-dimensional plane

strain elastodynamic calculation, again the best case is that of

Lamb's problem. The following forcing function is used,

F(t) = 1 [H(t-AT ) - H(t- 3 AT)]

(31) + At 2  2(t-AT (H(t-3 AT) - H(t - 4 AT)]

+ [(t - 4 Ar) 2 [H(t - 4 ATr+ At)]

27
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in which the factor Ar controls the rise of the step. We found

that with various element sizes (Ax, Ly), various time steps (At),

and various forcing function sharpness factors (AT), the present

finite element model requires the ratio V = VpZt/As be greater

than 1.2 and AT be greater than 10 At, where V is the com-p

pressional velocity and As is the smallest width of the element in

the finite element assemblage. As an estimate of As is required,

it appears that if the average period is T , As would have to be

about T V /10. Figure 11 gives the finite element mesh of the twcnp

dimensional Lamb's problem. In Figure 11, use of symmetry is made

to reduce the size of the problem. Although the grid sizes used

are regular, both element size and shape may vary. Synthetic

seismograms at various nodal points along the free surface have

been generated with 1.5 and AT = 12At (Figure 12a and 12b).

Figure 13 shows the diagram of the particle motion at an observation

point on the free surface. The characteristic elliptic retrograde

particle motion of Rayleigh wave is clearly identified.
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II. THE PERTURBATION METHOD APPLIED TO SOLVE

ELASTODYNAMIC PROBLEMS
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ABSTRACT

The root-mean-square perturbation method for solving wave

scattering and diffraction introduced by Thau and Pao has been

further developed to include the higher order terms. The method is

particularly suited for solving, for example, the classic problem

of wave propagation in a wedged medium. As an illustration, the

formal solutions to the problem of SH-wave propagation in a

wedged half-spce are obtained. Future numerical evaluation of the

solutions is in order.

C.T
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INTRODUCT ION

In solving elastodynamic boundary value problems, the

dual existence of two different types of elastic waves, compres-

*sional wave and shear wave, even in a homogeneous, isotropic,

elastic solid body has frustrated many theoreticians to solve some

practical, as yet complex problems in seismology. For example,

the use of Kontorowich-Lebedev transform will yield a solution to

the single scalar field problems of acoustic, SH- or electromag-

netic wave propagation. However, the use of Kontorowich-Lebedev

transform is no value in obtaining formal solutions in the elastic

solid wedge problem of P and S wave propagation.

Thau and Pao (1967) introduced a perturbation method, in

which the two different wave numbers in the two steady state wave

equations are replaced by their root-mean-square (RMS) average

value. All the perturbed wave equations and boundary conditions

involve only the RMS value, that is, there is only one single

wave number involved. The perturbation parameter, which is a small

quantity, is the difference of the actual wave number and the RMS-

value. They generated the perturbation solutions of the first

three orders, viz. the zeroth, the first, and the second order. They

also illustrated the application of this perturbation method to solve

elastic wave diffraction problems. Based on their two-term pertur-

bation solutions of the zeroth, and the first order, the results are

in good agreement with the known exact near field solutions at low

frequencies.

2



In this paper, we present the recursive formulas, which

can generate any higher order solutions for this RMS-value pertur-

bation method.

*3
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HIGH-ORDER SOLUTIONS

Thau and Pao showed that, for the steady state motion, the

two Helmholtz equations for elastic waves are

(1) (2 t ) w 0
1

(2) (72 + k 2 W 0

where V2 is the Laplacian operater.

(3) k W / v 1

(4) k 2  /v 2

w is the frequency, v1 and v2 are velocities and v2 >vI. For the

SH-wave problems in two media, v1 and v are the shear velocities,
1 2

and w1 and w2 are the z-direction displacement components for the

two different media, respectively. For waves in an elastic solid,

v is the shear wave velocity, v2 is the compressional wave velocity,

and w1 and w2 are the displacement potentials. For simplicity and

without loss of generality, here only one component of the vector

displacement potentials is considered. For example, for the plane-

strain problems, the displacement vector is j

4



Omiting the factor exp(-iwt), we can easily find the equivalencies

for the acoustic and electromagnetic waves.

Let

(6) k = (k1 2 + k22)/2

(7) k 12 = k2 ( + 2e)

2 2
(8) k = k (1 - 2)

where

k 2  k 2

(1 2
(9) 2 2

2(k 1 + k 2 )

is the perturbation parameter

Assume that

(10) Wi + (1) + 2 (2) ..... + n (n) .......

(o)+ 4-w + Lw I  L w I

(1) w o)+ C w() + (2w(2) +. ..... + n w + .......
2 2 2 2 2

Substituting (7), (8), (10), and (ii) into (1) and (2) and

equating coefficients of like powers of the n-th order wave equations,

we heve:

(12) 2 (n) -2 k 2 w(n-)

)w 1  i

5



2 2 (n) 2 (n-1)(13) (7 +k )w 2 =+ 2k w

* with n = 1,2,3 ...........

For n = 0, the wave equations become:

(14) (V 2 + k 2 )w 1() =0

2 2 (o)
(15) ( 2 + k )w 2  =0

For higher orders (n # 0), the total solutions of (12) and (13)

include two parts:

(1)w(n W (n) + w(n)

l n  =Wc Wlp

(n) (n) (n)

(17) w2 = 2c + w2p

(n) (n)
where Wlc and w are the complementary solutions, which satisfy the

homogeneous equations

(18) ( 72 + k 2 ) = 0

(19) ( 2 + k 2 )W (n) 0
2c

-T .... , "6



( lp and w 2 are the particular solutions, which can be obtainedWlp W2p

from the lower order solutions and satisfy the following inhomo-

geneous equations:

(20) ( 2 + k 2 )W(n) 2 k 2 ( wn-1)

lp 1

(21) ( 2 + k 2 )w(n) 2 k 2 n w n -)

2p 2

The particular solutions for the first, the second, and the third

orders are:

(22) w() 7w ( ° )ip =U

(23) w (1) - r Vw ( )
2p2

(2) (1) (1) 1 2 2 (o)(24) w =r *7w -w + - k r w1(2iWp "1

(2) (1) (1) 1 2 2 (o)

(25) W r - w2  + W2p - r
2p 2r 2p w2--

{r [2) (2) (1) (2) 2 2 (1)(26) W - {r- V[2w I + + ]-4 + k r w I

(26) Wlp 3 1 lc ic ip k 1

(27) w (3)  - {r 7(2w (2) .(2)_W (1) ]+4w (2) + 2 r2 w (1 )
2p 3r 2 2c 2c 2p 2

7



The n-th order particular solutions are:

(2) r .v [(n-i)w (i)+ a w rii + b (n2
lZp a ik 2 lc 2 l

-[(2n3)+b (n-1) + k2 r2 w(n-2)

+(-l)f [1 1 12 +............I
1 nni p

(29) w (n)~ 1 r -17 [(En-i)w (n-1) + a w (n-i)- b w(n-2)
2p a1  2 2 2c 2 2c

(n-i) 2 2 (n-2)
+ [(2n-3)+b ]w + k r w

2 2p 2

+ [I .............. +(_i)n- + +(-i) n)
1 2 n-i n

where

(3)n-i n-2 n-3 n-4
(3)a= E (m) a a 2  Z(m), a 3  E (in), a 4 = E (in)

(31) n-2 n-3 n-4
b = (2m-1), b (2m-1), b = (2mn-1)

1 ~ 2 l3 Ml

(32 1 (r.V)(r.V-2)[a n-) b w' -3 ] /2!

(33)
12I (r-V) (r-V -2) (r-V-4) [a w (-3 +b w1 (n4 /3!

2 1\1Al 4 c 4 8



( n-i 1 (r*V) (r.V-2) (r.7-4)....... [r.V-2(n-4) Ix

x ( w ( )+ 4w ( 2 ) /(n-3)

lc 1c

(35) 1 (r.7) (r.7'-2) (r.V-4).......... [r.V-2(n-4) I x
n

x [ (2) + w(1) /n2

In obtaining the recurrence formulas (28) and (29), we used the

following indentity:

2 2 (n)
(36) (V +k ) [(r.V) (r.V-2) (r.V-4)....... (r.7-2m) w.

nj vic

-- 2(m+l)k2 (r-7)4-.7-2)...... Er.v.2(m-l)~ wn
nv IVic

where m =0,1,2,3 ............ i - 1,2.

it is interesting to point out that the first order

particular solutions presented here are the same as those which

were obtained by Thau and Pao. While, the second order solutions

are different from the solutions obtained by Thau and Pao. In fact,

we can easily find three different forms of the perturbation solu-

tions for the second order particular solutions, viz.,

(3) w(2) = ~ - w (0)_ - () k 
2 
r2 w(o)

(38) w - (2) r-7( o+ -- (1)~ k 2 r2 w(o)

2p 2 W2c 2

9



4

(2)() (o) 2 2 (o)

(2 = r'V [w~ l  
- ()] + k 2 r o

(4) Wp 1 2 r w

(2) = r V [w ( I + k r(40) W(2  -V[ (1) +w(0) + k2 r2 w(0)

(41) w (2 r*V (w ()+ W() /2]
lp X I 1c ip

(2)_ _ r.L~(1) + W (1)/2

(42) w 2p rVw /2]
2p 2c 2p

Equations (37) and (38) are the same as those of the Thau-

Pao solutions. Equations (39) and (40) are the same as the solutions
tI

presented in equations (24) and (25). The reason we obtain different forms

of particular solutions is due to the fact that the following expressions

exist to generate these particular solutions:

(43) (V2 + k 2) [r'Vw( 1 )+ k r2 w ° = 0

(

i = , 2.

However, although we can find the different forms for the particular

solutions, after satisfying the prescribed boundary conditions for some

specific problems, the complete solutions w 
(2) w (2) + 1.(2)i. = w.i=c,.i.c ip

would be the same no matter which forms of equations (37) to (42) are

10



chosen. Similarly different expression of the particular solutions

for higher orders (n>2) also can be found. Therefore, here we shall

designate these solutions as "Pseudo-particular solutions" instead

of "particular solutions".

As for the perturbation parameter c, equation (9) can be

rewritten as

2[i - (Vl/V 2 )
(44) E= 2

2[1 + (V1 /V 2 ) ]

In an elastic solid, as Thau and Pao pointed out, the

numerical value of the parameter e is limited between 1/6 and 1/2.

If the problem of SH-wave in two different welded media, or acoustic

waves in two ideal fluids in contact, is considered, the numerical

value of £ is 1/2, for the extreme case when v- 0 or v 2 --- w.

However, there is no limit on the lower bound numerically. The

smaller is the contrast between vI and v2 , the smaller is the numerical

value of e. For example, for the case of two shear wave velocities

vi=3.7 km/sec, v2=4.5 km/sec, E is 0.0966. The first few order solu-

tions are good enough for a small quantity of e. Therefore, obtaining

the general recurrence formula, no matter how tedious the process may

be, these higher order perturbation solutions promise to solve some

long standing elastodynamic problems which otherwise are analytically

untractable.

III



APPLICATION OF THE RMS-VALUE PERTURBATION METHOD TO

SH-WAVES IN A SLOPING INTERFACED HALF-SPACE

The geometry of the problem in question is an elastic

wedge overlying an elastic bottom as shown in Figure 1. Both media

are assumed to be homogeneous and istropic solid. The inclined

interface is assumed to be perfectly welded. Restricting a line

source of the SH-wave type located in the wedge, we can consider the

problem to be two-dimensional so that the particle motion of SH-

waves is confined to the direction of z only, and the wave propaga-

tion direction is in the (r,e) of the polar coordinate system.

The overlying wedge medium ( plp1) is bounded by e=o and e=; the

under-lain bottom medium (p 2 ,P2 ), is bounded by 6=a and 6=7r, where

1 ji and pi i=1,2 are the rigidities and densities of the overlying

and bottom media respectively. A line source of SH-wave is located

at the Cro O ) in the overlying wedge. The displacements W. (r,,t),

i=1.2. satisfy the wave equations in the overlying medium and bottom

medium, respectively

(45) 2

Sv 2 - 2 2 - 6(r-r O ) 6 (e-6 0 ) 5 (t-O + )

atr
2

(46) v 2 W1 at2  0
2 2 a2

1W at

where

(47) i  V(i/Pi) , i = 1,2, 1< 2

12
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The conditions to be satisfied in the traction free boundaries are

sufficiently described by the vanishing of the normal components

of the stress. At the perfectly welded interface between two dis-

similar media, there must be continuity of the displacements and

stresses.

By taking Laplace transforms of the equations (45) and

(46) with respect to t, the new transformed equations are

I

2 2 27T
(48) (V h 1 ) w 1 (r,6,p) = 6(r-r )6 (e-oro

- (49) (V 2 - h2) w2 (r,5,p) = 0

where

(50) wi(r,8,p) =t[W(r,,t)] = f W.(r,5,t) exp(-pt) dt
0

and h. = p/5i  i = 1,2

Using the present RMS perturbation method, we obtained

a third-order formal perturbation solutions as

(51) W.1= W(0) + FW(1) + 2 w(2) + E3 w(3)
1 1 1 1 1

where

2 21 - 2 82 -1

(52) 2 2 2 2 2
2 (h 1 + h2 ) 2 ( 2

6 14



The Zero-order displacement components are:

ch s(7T-6 > +8 <

2 -f
(53 w () 2i - sh s(7-6 )sh se + K. (hr )K. (hr) ds

1 7T2 O+A(0 h0 sis 0 is(5) w - (o) ch se

As

(54) w (0) fE (0) ch s(T -e) K. (hr )K. (hr) ds
25 is 0 is

with

- I2 sh s(-a)[ch s(7-L+@O ) - sh s(r- 0) sh sa ] +

(5) A + i ch (f - ) [sh s ( - c+e0 ) + sh s ( T- e )  ch sa ]
(55) A(° -

S

P 2 sh s(ff-a) ch Sa + i ch s(r-) sh sa ]

ch sa [sh s(f-a+ o0) + sh s(7-e) ch sa ] +

+ sh sa [ch s(r-a@O ) - sh s(r-OO ) sh sa ]
0 0

(56) E =

2 sh s(-a) ch sa + ii Ch s(r-cL) sh s ]

The First-order displacement components are:

ch s(>-6+8<) -

(57) w I  - f' -_  sh s(n-6 0) sh s6 +

( A (° ) ch s h

S

hr0 [Kis+l(hro) + K is 1 (hr)] Kis (kr)S i5ds

3Ks (hr)

- Kis (hr ) r

3Sr



(58) = i f' E ch s(ir-e) K. (hr) ds +
2 T2 -0 S i

+2i E (o) ch sCer-) K. (hr ) r Kis (hr)

T 5 0 is 0) T

with

(59) = M hr [K (r) + K. (hr E E(0)

s 0 is+l 0 is-i 0 5

The Second-order displacement components are

ch s(Tr-e>+6<)
(2) 2 i

(60) w -fI - sh sOT-6) sh se+ x
1 T 1 C O + A M c h s e

5

~r r (K. (hr )K 1 (hr)+K 5+ (hr0 )K (hr 1
2 ~ ~ ~ ~ ) 0(hr)]s~ s~ i-

2
x + (hr/2) K.i (hr O)[ Kis+2 (hr) + K.is 2 (hr) I + ds

+ 2-21 0 K is(hr) +K.i- (hr)]K.i (hr)

(6)(2) -w (2) (2)
(6) w2 w2c w2p

(2) 2 i .0 (2)
(62) = -c _f E sch s(?w-6) Ki (hr) ds

with

16



() hr 2
(63) E~2  {(- O)

2 K (h + K.(h
s 2 is+2 (hr)]2

-(is) 2K. (hr )I E(a
is 0a

The Third-order displacement components are:

ch s(7r-e>+e )-

(64)- w-3 i sh s(r-6 ) sh s6+

7r + A(O ch s6
5

(hr

[K+ (h is+ K (hr~~ K. (hr) +
*2-3! is30 s 0 i

h 3___ 3 3
+ - K. (hr ) [r K (h r) + r K. (r)

2*3! is 0 is+3 is-3(h)

32 ds
h 3r 2r
+ 0 K.i- (hr 0)K isl(hr)+K is2(hr)K is1(hr)]+

32*2

hr (h r ~ r K2h ~(rI

+202 [ is-i h o )Kis+2 (h)+Kis+2 (ro )Kis-i k)

w(3) w(3) +w(3)
(6) 2  = 2c 2p

(66) w 3c 2 E sch s (i-e) K i (hr) ds

3) 2 is)

t(67) w _ E ch s Or-6) {J i + . + J ds
3p f2

m  s 1 2 3 4
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with

-12 0 Kis+3 (r0 )+Kis-3 (h o)

hr 0-2 [K (hr )-K. (hr )I+2 is+2 0 is-2 0

(68) E (3 E (0)
s (i)2 S

+ -(hr 0)[ K.i~ (hr 0) + K is1(hr 0)1-

(is) 2K.i (hr0

(hr)3
(69) 1 = K i h ) -- [ K s(hr) + K~- (hr)]

h3 rr2

hrr
(70) 4 [K.i+ (hr ) K i (hr 0 K h)K h)

32

(71 - K (hr [K ~ (hr) + K - (hr ) + h~

(72) J =+ () [K2 h K (hr )
4 2 i s2 is -0

(is)i2



FUTURE WORK

The formulation of the higher order perturbation method, as

an example for solving one of the long standing wave propagation

problems, i.e. the wedge problem, is completed. The follow-up

will be a numerical evaluation of the formal solutions to the

problem of the SH-wave propagation in a sloping interfaced half-

space.

19
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ABSTRACT

This paper presents the numerical solutions to the
problem of the transient seismic response of an elastic whole-
space, an elastic half-space, and a layered elastic half-space
due to a finite cylindrical cavity source by means of the finite
element method, based on the principle of Virtual Work.

Synthetic seismograms of both the radial and vertical
displacements of the transient response of Model I - a whole-
space, Model II - a half-space, and Model III - a layer half-
space for a finite cylindrical cavity source embedded in the
medium at several important observation points are obtained.
Some of interesting features of the transient response are as
follows: (1) for the observation points inside the medium, the
reflected waves from the surface boundary of the half-space
does not seem to have significant effect on the amplitude of
the wave for the velocity of the medium assumed. For vertical
displacements, the arrival of the reflected wave is identified
as a step in time. For radial displacements, the arrival of
the reflected wave is not easily identified, (2) the amplitudes
of both vertical and radial displacements at the observation
point on the surface of the half-space are much larger than
these at the corresponding observation point in the medium of
the whole-space, (3) the wave forms of the transient response
strongly depend on the dimensions of the finite cylindrical
cavity, i.e. the radius and length of the cavity, (4) the P wave
traveling periodically from the top rim to the bottom rim of
the-cavity along the vertical interface of the cylindrical
cavity and the P wave periodically oscillating in the bottom
(or the top) face of the cavity with a motion of the Bessel
function order zero type, and traveling through the vertical
face of the cavity, to the top (or the bottom) face of the
cylindrical cavity also with a motion of the Bessel function
order zero type are dominant in all three models, (5) there is
no vertical displacement at any point along the middle plane,
whcih are symmetrical with respect to the two end faces of the
cylindrical cavity, in Model I - a whole-space, (6) for Model
III - a layer half-space, the long period wave is predominant,
traveling periodically along the verical face of the drilling
hole cavity between the rim of the contact at the layer-interface
and the top rim of the cylindrical cavity, (7) the weathering
(low velocity) layer acts as a low pass filter, all the high
frequence arrivals are filtered out in the seismograms at the
observation points located in the weathering layer, (8) the shape

i.



of the input forcing function is well preserved on each
seismogram of the vertical displacement but not on the radial
displacement, (9) the beat phenomenon is observed on the
radial displacement of these observation points located in the
upper region of the cavity source, (10) the amplitudes of both
the radial and vertical displacements are extremely large at
those observation points close to the cavity in the filled
drilling hole, but are attenuated rapidly as the observation
moves away from the cavity, and (11) shear waves can be
generated from a finite length cavity source with only normal
stresses applied on the surfaces of the cavity. The arrival
of the shear wave are clearly identifiable at these observation
points in the region along the diagonal line of the cylindrical

* cavity.
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1 INTRODUCTION

For the transient problem of a layered medium due

to a finite cylindrical source, we must resort to numerical

solutions, such as the finite element method, which provides

a mean of solving a class of transient problems of elastic

wave scattering and diffraction. For this reason, we have

developed the finite element method to solve transient

problems of elastic wave propagation in a layered medium due

to a finite cylindrical source. The formulation for the

finite element method based on the principle of virtual work

is briefly outlined in sections 2 through 4. It should

be pointed out that all the inherent logarithmic singularities

are being removed analytically in the formulation. Therefore,

the errors due to the singularities will not be introduced

into the numerical calculation. The applicability of the

method to solve practical seismic problems has also been

well demonstrated through solving a series of the transient

problems in an elastic half-space and a layered half-space

due to a finite cylindrical cavity source as shown in section

5. The numerical results and interpretation are presented

in section 6. Conclusions are presented in section 7.
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2. DEVELOPMENT OF FINITE ELEMENT DISCRETIZATION BASED ON

VIRTUAL DISPLACEMENT FOR SOLVING TRANSIENT PROBLEM OF

A FINITE CYLINDRICAL CAVITY COMPRESSIONAL SOURCE

The Principle of Virtual Work states that for the

equilibrium of an elastic, isotropic and homogeneous body,

the total internal virtual work is equal to the total

external virtual work for any compatible and small virtual

displacements imposed onto that body (Fung, 1965)-

Jv T6Et dv = fv fb6Utdv + Is fS6Utds 1)

For an axial-symmetrical geometrical configuration

with a dynamic source excitation, we adopt the cylindrical

coordinates system (r,O,z). The quantities in 1) assume

the following:

C (a) The azimuthal-independent displacement field Ut and

tt
the'corresponding strain £t are

Ut [ ur , 0, uz ]

C = [ err' Ce,' £zz' 0, 0, £rz ]  2)

(b) The strain-displacement and the corresponding

stress, and the stress-strain relations are

=i (ui j + uj )/2
Jij,

rr Teel tzz' 0 0, rz]

Tij = [ kk6 ij + 24c ij] 3)

(c) fs and fb are the surface traction and body force,

respectively.



3.

1) may be converted to a system of ordinary

differential equations by the following arguments. As

the volume V may be divided into n subvolumes, or finite

elements Vm , and the surface S, similarly divided into

n subsurfaces Sm , m = 1,2,3, ......... N, we then have

lim N lim N

N -m , S = N S 4)
m=1 m=1

S
In each subvolume (or subregion) Vm , instead of

determining the displacement field everywhere in Vm , we

find the displacement vectors at only a discrete finite

number of points in Vm, viz; nodal points, under the

action of the external forces. The displacement vector

at the points other than these nodal points may be

determined from the displacement vectors at the nodal points

through some interpolation functions. Within each element,
m

the displacement field U may be expressed in the form

Um Nmm 5)

and the strain-displacement relation is

Em = BmTm 6)

where

Nm = a known matrix of the spatial interpolation

function for the mth element,

T m = the nodal displacement vector of the mth element,

Bm = the matrix of the strain-displacement relations

of the mth element.

£
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After applying equations 4), 5) and 6),

equation 1) becomes

NE (IWmT+m+ Tm) 0o 7)
m--l

with

Mm fn P (Nm) tNm dvM 8)

=fvm (Bm)tDmnBm dvm 9)

T m f m (Nmf)t (f') t dsm10

where b? Kin, Din, Tm are the mass matrix, stiffness

matrix, matrix of constitutive relation, and vector matrix

of tractions applying on the surface S, respectively.

4Al



5.

3. INTEGRATION OF THE INTERPOLATION FUNCTION N' ON AN

AXIAL-SYMmETRICAL TRIANGULAR RING ELEMENT

For the present transient problem, which possesses

an axial-symmetrical geometry, we may adopt 'solid

toroidal elements' for the spatial domain. Since the

whole formulation is independent of e, the integrals
for the volume and surface integrations in the equations

of virtual work reduce to these of plane surface integrals

and line integrals.

Since the displacement field is linear, we position

the element arbitrarily in the r-z plane. Constructing

the element stiffness matrix, even for the simplest

case of a linear displacement field, we must take into

account the dependence of the strain-displacement equations

on the inverse of the radius, particularly, the singularities
along the axis of symmetry. Applying the proper interpola-
tion function for space, and using the pertinent strain-

displacement relationship, we obtain the kernel stiffness

matrix as follows:

(l-V) 4 12 (I-v)1 5  0 0 VI 2

12 211 13 0 0 2VI1

(l-v)I 5  13 6+(-2)Ii/2 0 (i-2v)I1 /2 I3

0 0 0 0 0 0

0 0 (i-2v)Ii/2 0 (i-2v)Ii/2 0

vI2  
2 1l.I 1  1I3 0 0 (1-v)I1

11)

c



in which

I, ff rdrdz 1 4 =ff drdz/r

1 2 =f! drdz 15 =ff zdrdz/r

1 13 =ff zdrdz 16 =ff z 2drdz/r

The spatial integrations I~ through 16 have carried

*out analytically so that the inherent logarithmic

singularities are being remo-,ed. Otherwise, the errors

due to these singularities will be introduced into the

numerical calculations. The terms Ilt 1 20 and 1 3 yield

(1/6) (r +r +r )[r C 2 z)+r (z-z )+r (z1 -z2

1 2 =(1/2)[ 11 (z 2-z 3)+r 2 (z 3 -z1 )+r 3 (z 1 -z2 )]

3L ~~~1 3 =(1/6) (z 1 +z 2+z 3 ) [ 1 (z 2-z3 )+r 2 (z 3-z1 )+r 3 (z 1 -z2 )]

12)

The terms I4 15, and 1irvlethe variable r in the

denominator of the integrand and result in considerably

complicated expressions.

g7



Wi In the case r 1Xr 2 4r 3,;r1 /O

14 - 1 2 +X 2 3 + 3 1

I y + y + y
5 2 23 31

16 Z 1 2 Z 2 3  3

$where, for i,j=1,2,3

r.-r r.

(zi- z.)

1) 4(r.i-r.) 1 )1 ) 1J

r z-rz r.

r.z.-r.z. r. (z.-z.
Z. =j (1/ 3 )( 1 -r -- )-3--) r 1 +1(r

(z.2 (lr. 2 7r r. + 2r.2) + 2z z.(2.5r. 2 lr.r. +

2.5r. 2) + z 2 (hr 2
-7r r + 2r 2 )] 13)



8.

Special problems arise, when the joints are located

on the axis of symmetry, as the terms with ln(ri/r j) and

(ri-r.) in the denominator become infinite. In this case,

we evaluate the integrals by L'Hospital's rule.

(ii) In the case ri rj#rk ri , and ri=0

r. (zk-zi)+rk (z.-z.) r.1 4 = k in - -In

r-rk rk

I5= Yjk + (1/4)1(zi-z j )(3zi+z.)+(zk-Z i ) (3zi+zk01

(1/2)zi 2 in-__
rk

16 z jk + k- (llzi 2 +5z izk+2z k2) +
18

ZZ (lz. 2+Szz+2Z 2 r
18 i+2z ) (1/3)zi3  In rk
18 1 J~1 rk

14)

(iii) In the case r±=rk, and rj#ri#0

r. r.

14 = [(---) 1n- - 1] (zk-zi)
rj-rk rk

ki



W 9.

zk- i 2 2r*15 = -Z (rj zk+r. zi- 2rjrkz.) in ri

2 (ri-rk) 3 IC J r z rk

z k- z 
(ki4(r.-r2 [2zj (rk~rj) - (3rj-rk) (zk+zi) ]

(zk-Zi)r 2j

16 3 (rj-rk) 3 r 2 (zk2+zizk+zi 2)+3 rkzj(rkzrj-r zk-

r. (zk-zi)

r 1zi  n- -- + 2 z. (3rj -15rjrk-
rk 18 (r j-rk )

6rk2 )+z. (zk+Zi ) (6rj
2+15r rk-3r2 - (zk 2+

ZiZk llr-7rjrk+2r 2 H 15)

i k i k 2 k ~

(iv) In the case ri=rkdri , r=rk yO, and r=O

14 = -(Zk-Zi)

I5 = i (2z +z i+zk) 16)

4

16 k (6zj 2+2zk 2 +2z i2+3ziz +3 z Zk+ 2 zizk)18
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(v) In the case when ri=r 0, and rk=, it can be shown

that the terms containing 14 15 and 16 do not appear

in the stiffness matrix that the displacements ui=uj=0.

All these integrals can be used as a basis for deriving

the similar integrals of nonlinear interpolation functions.

4. TIME INTEGRATION SCHEME

After careful and critical tests and evaluation of

various three-dimensional finite element formulations,

it was found that the combination of lumped mass matrix

representation and explicit central-differences time

integration of three-dimensional finite element

formulation appears to be the best in solving transient

problems of elastic wave propagation. An important

advantage of using a lumped mass matrix is that the matrix

is diagonal, and as it will be seen later, the numerical

operations for obtaining the solution to the dynamic

equation of equilibrium are simplified.

The scheme of time integration for the dynamic

structural problem with the equation of motion

MV + KU = F 17)

can be considered as a subclass of the explicit methods of

the form



N
SUn+ 1 + Z (ajUn j + bKU )= 0 18)j=0

with N=2, a0=-2, a1=1, b0=t 2, b1=O.

Therefore, we obtain

U(t+At) = U(t) + 0(t)At

0(t+At) = 0(t) + M- KU(t+At)At 19)

which is the central differences scheme. Krieg(1970)

and Baylor et al(1974) have proved that the central

differences scheme has the largest stability region.
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5. TRANSIENT PROBLEM DUE TO A FINITE LENGTH CYLINDRICAL

CAVITY IN AN ELASTIC HALF-SPACE AND LAYERED HALF-SPACE

In this dissertation, with a view to simulate

conditions in the neighborhood of a drilling hole, the

source chosen is a cylindrical cavity of length k = 6

feet, and radius a = 0.5 feet, centered at the origin of

coordinate and embedded in an infinite medium, Figure 1.

For comparison, we simulate the second model with the

half-space, the surface of the half-space is located at

25 feet above the top end of the cylindrical cavity, as

shown in Figure 2. The half-space medium is character-

ized by the elastic constants E, u, p as medium 2 given

in Table 1.

In seismic prospecting, a layer occurs at the surface

of the earth which is unconsolidated, and often heterogeneous

with low wave velocity, so called "weathering layer".

The thickness of the weathering layer may vary from almost

zero to several hundred feet; however, the most common

thickness is from about 25 feet to 100 feet. For our

computation, we simulate the weathering layer with a

thickness of 20 feet. The cylindrical cavity is embedded

5 feet below the weathering layer, including the case of

a filled drilling hole. The geometrical setting is shown

in Figure 3. The medium of the weathering layer and

the filled drilling hole are characterized by the elastic

constants E1, ai" PI and E3 , , V3' respectively, as

given in Table 1. The finite element meshes are formed

according to the dimensions as described above -and shown

in Figure 4,5 Model I has 687 nodal points and 1268



13.

p

6 feet P

3b

2PP210

Figure 1.The Geometry of Model I -the

Whole-space.
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25 feet

- I *3t

6 feet P

I 4M

Figure 2. The Geometry of Model II -the

Half-space.
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20 feet
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Figure 3. The Geometry of Model III -the

Layered Half-space.
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Figure 5.The Geological Setting for Model.-III.
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elements and Model II and III have 729 nodal points

and 1348 elements. The size of the finite element

models is chosen in such a way that the artificial

reflections will not reach the observation points within

the time interval of 0 - 15 milliseconds.

The system is set into motion by the application of a

sudden, normal stress applied uniformly on both the

vertical walls and the two ends of the cylindrical cavity.

The time variation of the applied stresses are assumed to

be given by a modified Heaviside function as shown in

Figure 6. The rise time of the pulse is assumed to be

16At, where At=20 pseconds, is in order to satisfy the

Courant's stability condition.

In order to study the transient response in the region

along the vertical surface of the cylindrical cavity, the

observation points along LINE A, B, C are selected (see

Figure 7). In order to study the diffraction behavior

of the rims of the cylindrical cavity and the comparison

between the transient response in the weathering layer and

the half-space, we choose the observation points to be located

along LINE D and E. The observation points along LINE F,

G,HI,J,K are chosen to investigate the transient response

in the upper region of the cylindrical cavity and in the

filled drilling hole. For the surface response as encon-

tered in seismic exploration, the observation points are

selected to be located along LINE L.

For the limited computer time available to the present

study, only the computational results for the displacement

Ur and Uz in the time interval of 0 - 15 milliseconds for

the observation points along LINE A through L of Model I,

II, III are obtained as presented in Figure 10 through

21.
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I5 86 57 88 89 90 91 92 93 94 95

(12345 6 7 8 9 10)
LINE L

LINE FG,H LINE D

148 149 150 /154 (70) 65 feet

64 65 66)1

170 / 174 (90)(86) /

190 191 192 195 (111)

(106 107 1081
212 /215 (131) A,

(128)
232 233 234 236 (152)

(148 149 150)
254 256 (172)

(170)

274 275 276 277 (193)
(190 191 192) 298 299 300 301 302 303 304- - - -- - - - LINE A

(214 215 216 217 218 219 220)

337 338 339 340 341 342 343

(253 254 255 256 257 258 259) LINE B 6 feet
377 378 379 380 381 382 383

(293 294 295 296 297 298 299) 
LINE C

395 39 6 397 398 (314)

(311 312 313

417 \419 (33S)
(333)

437 438 439 \441 (357)

(353 354 355)

459 \462 (378)
(3 7)48(0)

- 479 480 481 484 (400)

(395 396 397)

501 "505 (421)

(417) 65 feet

521 522 523 527 (443)

(437 438 439

LINE IJK LINE E

71 feet

Figure 7a. The Locations of the Observation Points

in the Numerical Solution for Model I.
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12 3 4 5 6 7 S 9 10 LINE L

4 5 LINE F,GoR LINE 0

64 65 66 ./70

86 /go , , 0,

106 107 108
12 25 feet

128 /131

148 149 150 /152

170 172

190 191 192 " 193

214 215 216 217 218 219 220
LINE A

253 254 255 256.257 258 259 6 feet
LINE 0

293 294 295 296 297 298 299

LINE C

311 312. 313 • 314

333 I \335

353 354 355 57

375 •378

395 396 397 400

65 feet

417 21

437 438 439 443

LINE 1,J,K LINE E

71 feet

Figure 7b. The Locations of the Observation.-Points

in the Numerical Solution for Model II.
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1 2 3 4 5 6 7 8 9 10 LIR L

LINE FG.N LIZIE 0

64 65 66 

/70

86 / 20 feet

106 107 108 ,/V11 IllO

128 1,31

143 149 150 /152

170 /72

190 191 192 "193 5 feet

214 215 216 217 218 219 220
LIKE A

253 254 2S5 256 257 258 259
LINE B 6 feet

293 294 295 296 297 298 299
LI C

311 312"313 "314

333 335 12,U2,C2

353 354 355

375 *378 65 feet

395 396 397 -400

417 421

437 438 439 \\43

LINE XJK LINE E

71 feet

Figure 7c. The Locations of the Observation Points

in the Numerical Solution for Model III.
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6. INTERPRETATION THE NUMERICAL RESULTS

A. Ray Paths for Model III
I

It appears to be instructive to use the simple

concept of ray to show the various arrivals of waves

in Model I, II, and III. As the ray paths for Model

* I and II are relatively easily traceable, in order to

avoid duplication, we choose to show schematically the

principal ray paths for Model III of a finite cylindrical

cavity source located in a two-layered half-space with

a filled drilling hole with unconsolidated material.

It is assumed that the upper layer models a weathering

layer, whcih is underlain by a relatively consolidated

half-space. The filled drilling hole is properly tapped,

and there are no blowouts. The cavity simulates a

cylindrical charge. The following notations for the

expected arrivals of waves are adopted:

(1) Subscripts 1, 2 and 3 refer to wave velocities

in the upper layer; i.e. the weathering layer, the under-
lying half-space and the filled drilling hole, respectively.

(2) Superscript t refers to the rim of the filled

drilling hole on the surface, the rim of the contact at

the layer-interface, the top rim of the cylindrical cavity,

and b refers to the rim of the contact at the layer

interface, the bottom rim of the filled drilling hole, and

the bottom rim of the cylindrical cavity, so that for

example, lb = 2t, 2b = 3t.

(3) Subscripts J refers to cylindrical waves on the

top and bottom faces of the filled drilling hold and the

cylindrical cavity of the Bessel function order zero type.

S..|
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(4) Superscripts, IN, 2N, and 3N, refer to the repeated

multi-ray paths along the surface of the filled drilling

hole between it, lb; 2t, 2b; and along the cavity respectively.

N is the number of repeated multi-ray path.

(5) Primes, refer to refracted waves.

The ray paths of the principal wave arrivals are

shown in Figure 8 and Figure 9, for P-waves, and for

P converted into S, respectively. The ray paths for S

waves and for S converted into P waves can be similarly

traced, according to the Snell's law. The following are

the identification of various waves for Models:

(1) Direct Waves,

P, S: P and S waves directly from a point of the cavity

source to the observation point.

(2) Direct Diffracted Waves,

p, p3b s3t, P3b: Diffracted P and S waves

traveling from the top and bottom rim of the cylindrical

cavity source.

(3) Diffracted and Reflected Waves,

2 2' 3b " 3b5  Diffracted P wave
2 P2' ' 2 2' P2  2

traveling from the top and bottom rim of the cylindrical

cavity source to the layer interface and reflected as P

wave or converted as S wave, respectively.

3t 5 3b~ 3t 3b
s2 P2' S2 2 S2 s2' s2 S2 : Diffracted S wave

traveling from the top and bottom rim of the cavity source

to the layer interface and reflected as P wave or converted

as S wave, respectively.

kwoo
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(4) Refracted Waves,
I 3t_ 3b, 3t_ 3b2 pit l P2 P1  P3S1  P2 Si: P wave traveling

2 1' 2 1' 2 1' 21
from the top and the bottom rims of the cavity source to

the layer interface and refracted into the first medium as

P wave, or converted as S wave, respectively.

S 3tsl s3bs, 3 tt , 3b~i: S wave traveling
2 2 2 1' 2 1

from the top and the bottom rim of the cavity source to

the layer interface and refracted into the first medium as

P wave or converted as S wave, respectively.

4 2 pi t 51  p 2wave traveling vertically from the

top rim of the cavity source along the interface between

the filled drilling hole and the layered medium, with the

velocity of the half-space and refracted into the filled

drilling hole as P or converted to S.
2tP, _2t,P2 ,1  p ti3: P wave traveling vertically upward
1 3' 13

from the rim of the contact between the layer interface and

the filled drilling hole and refracted into the filled

drilling hole as P or converted to S.

S 3t S30 3tPP S wave traveling vertically from the2 3' 23
top rim of the cavity source along the interface between

the filled drilling hole and the layered medium, with the

velocity of the half-space and refracted into the filled

drilling hole as P or converted to S.

S 2S SI 2tP: S wave traveling vertically upward

from the rim of the contact between the layer 'interface and

the filled drilling hole and refracted into the filled

drilling hole as P or converted to S.

(5) Multi-Diffracted Waves,

3t 3b 3t 3b_3t 3b 3111 3b
P2 P2' 2  2 2 2 ( P 2  P 2 ) .......

p3b 3t P3b_3t 3b_3t 31113t.
2 2 ' 2 2 2 2 (=P 2 P2 )......
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3t_3b 3t 3b 3tP3b ( 3111 3b
2 p2 2 2 2 2 2 2 2 2 2

3b 3t S 3b P 3t 3b p3t 3111 s3tP2 p2 S2' 2 2 2 2 2= P2 2

Diffracted P wave traveling periodically from the top
rim to the bottom rim of the cavity along the vertical

interface of the cylindrical cavity and diffracted as

P wave or converted as S wave respectively at the

top (or bottom) rim of the cavity.

p2b 2t 2b 2t 2b 2t 2111 2t)
2 2 ' P2 P2 P2 2 (=P 2  2 ............

p2b 2t 2b 2b 2t 2b 2t 2b _2IV 2b
2 P 2 2 ' 2 P2 P2 22 (= P2 P2 ).......

p2b 2t 2b 2t 2b 2t 2111s2t,
2 p2 S2 P2 P2 P2 p2 S2(= p2  S2 .......

2b 2t 2b -2b 2t 2b 2t 2b _2IV2tp2 P2 P2 S2' P 2 2 P 2 p2 S2 (= 2 S2 ''"

Diffracted P wave traveling vertically along the hole

between the top of the cylindrical cavity and the layer

interface and diffracted as P wave or converted as S

wave respectively at the top rim of the cylindrical cavity

or the layer interface.

(6) Special Waves,

p 3t 3bP 3b -3bp3 tp 3t
J 2 2J 2 ' JP2 2 JP2

p P 3t p3b P 3bp3t_ P 3t( P 311p3t)....
J 2 2 J2 2 J 2 ( PJ 2  2

P wave traveling periodically from the bottom (or the top)

face of the cavity with a motion described by the Bessel

function order zero, through the vertical face of the cavity,

to the top (or the bottom) face of the cylindrical.cavity

also with a motion described by the Bessel function order

zero.

i.
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*B. Detailed Interpretation of Synthetic Seismograms

Figure 10 through 21 show synthetic

seismograms of both the radial and vertical displacements
U and U of the transient response of Model I - a wholer z
space, Model II - a half-space, and Model III- a layer

half-space due to a finite cylindrical cavity source

embedded in the medium at the observation points along
lines, A to L, as shown in Figure 7.

We here shall attempt to identify the principal wave
arrivals, by means of both the recognition of the change

of the characteristics of the wave forms and the expected
arrival times of these principal waves based on the ray

tracing technique.

Line A

Figure 10 shows synthetic seismograms of Line A,
at the nodal points 214,215,216,217,218,219 and 220 for

Model I, II, and III. (See Figure 7 for the locations

of the nodal points) In Figure 10 a1 , the radial

displacement Ur, the arrivals of each trace, P 
S 3b

2 23b 3t 3t 3b_3t 3b 3t
PJP2 P2 PJP2 ' P2 p2 p2 , and the multiples of PJp P2 2'
3t 3b3t

P2 P2 p 2  are identified. The paths of these arrivals
are shown in Figure 8 and Figure 9. In addition to
these arrivals, by comparing the radial and vertical
displacements of Model I with these of Model II, the arrival

3tof the wave, P2 P2 , is identified as a step in time and is
indicated in Figure 10 a2 '. The arrivals of
P, p 3b 3t 3t 3b 3t P2b 2t 2b 2t 2b 2tP2' PJP2 2 2b2t 2'bt -2b 2t

p2PJP2' p 2 p 2  p2  2 2' 2 2 2' P p3 P2'
p2b 2t_ 2b 2t a 2b 2t 2b 2tt P3 S2' $3 $3 P2 and the multiples of P 2 P2 P2 ' P2 P2 $2'p 2p 2 t 3b 3tP 2P 2P, and PJ1 2 P 2 PJP 2 are similarly identified in
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Figure 10 a3 for Model III.

As the P wave velocity in the half-space is assumed

to be 5000 ft/sec, the travel time of 1.2 milliseconds for

a P wave is equivalent to the travel distance of 6 feet,

which is the length of the cylindrical cavity. In Figure

10 a1 , the periodic wave train immediately following the
a3t 3b 3t

arrivals of 2 P22 with a period of about 1.2 milli-

second marked by "A" on the seismograms begining at 4.2

milliseconds with respect to the origin time, appears to
3t 3b 3t

fit the traveling path of the type of P wave P2 P2 P 2

traveling periodically from the top rim to the bottom rim

of the cavity as P wave along the vertical interface of

the cylindrical cavity. The wave train with a period of

1.6 milliseconds marked by "B" on the trace 214 in Figure
3t 3b 3b

10 a 1is indicated as PJP2 P2 PJP2 ' as the travel time

of 1.6 milliseconds for P in the half-space is equivalent to
3t 3b 3b

the traveling distance of 8 feet. The P wave PJP P PP
J 2 2 J 2

apparently is traveling back and forth periodically around

the cylindrical cavity. Because the distances between

-each of the observation point and the top and bottom rims

from the top rim and from the bottom rim of the cylindrical

cavity interfere constructively and destructively, depending

on the distances between the observation point and the top

and bottom rims of the cavity. Iin Figure .10 a , for the

velocity of the medium assumed, reflected waves, P2 P2 , from

the surface boundary of the half-space does not seem to have

significant effects on the amplitude of the wave, compared

with P3t in a whole space, as in Figure 10 a1 . Seismo-

grams in Figure 10 a3, and especially 10 a3', show the

. . . . .. . ..
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superposition of the short period waves 
of about 1.2 milli-

seconds on the long period wave of about 5 milliseconds, as

marked by "L". The long period waves observed on these

seismograms are essentially generated in the filled drilling

hole with a very low velocity as radiated cylindrical waves,

as the refracted waves from the weathering layer arrive

later than the time of 1.5 milli-second. The travel time

of the P wave in the filled drilling hole from the top of

the cylindrical cavity to the layer interface is 5 milli-

second, corresponding to a distance of 5 feet. The travel
2b 2tdistance of the wave P 3 p 2 is exactly 5 feet. Therefore,

thes log prio 3 2b2
these long period waves are identified as P3 p3 , traveling

along the hole vertically between the top of the cylindrical

cavity and the layer interface. The input step function

is not as clearly preserved in the radial displacement in

Figure 10 a1 , a2 , and a as in the vertical displacements as

shown in Figure 10 aj,a and a;. For a finite cylindrical

cavity source, the preservation of the input step largely

depends on the configuration of the observation point.

All the observation points in Figure 10 a1 , a2 , and a3
are located along a line perpendicular to the axis and

parallel to the top and bottom faces of the cylindrical

cavity. The normal applied stresses on the vertical

face of the cavity contribute to the radial displacement

in a radially outward direction, but the applied stresses

on the end faces of the cavity tend to elongate the cavity

in an axial direction and contribute to the radial

displacement in a radially inward direction along the

vertical face of the cavity. The combination of the

applied stresses on the both end faces and the vertical

face of the cavity gives the resultant complicated radial

displacement. Because Nodal Point 214 is only'2.5

feet from the top rim of the cylindrical cavity, the

contribution due to the applied stresses on the both end
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faces of the cylindrical cavity to the radial displacement,

at Nodal Point 214 is approximately the same order of

magnitude as that due to the applied stresses on the vertical

face of the cavity, as reflected through a radially outward

response of the wave forms between the arrivals P3t and
3b 2

S2  As the distances between Nodal Points 215 to 220,
and the cylindrical cavity increase, the contribution due to

the applied stresses on the both end faces of the cavity

becomes pre-dominant, as reflected through the radially

inward response of the wave forms between the arrivals P3t

3b 2
and S2 as designated by "C". In Figure 10 aI ', and

a2  the vertical displacements U , the wave arrivals P2'

3b P 3t3b3t -31 p 3t 3t 3b 3t 3b P3t and the multiples
2 2 P2 P2 32' J 2 p2  P2 P2 P2 P2  2

of 3t3b 23 P3P2 P2 and P3t p3b 3t 3b 3t2 2' J2 2 P2 P2 P2  are identified.

The ray paths of these arrivals are given in Figures 8

and 9. In addition to these arrivals, the arrival of a
stpP3tstep P2tP 2, in Model II Figure 10 a2

1 , is identified.

In Figure 10 a3 ' of the vertical displacement U of Y'odel
2b 2t 2b 2t 2b 2t 3 t 3b^III, the arrivals, P2' P2 P 2  , 2 P2 S2 f 3 3  P 2 P2 S2'b2t2b 2t 2bp2t 2b_2t

andP2b P 2t S and the multiples of P2 P2 , 2 P 2 2t, P3 P3a 3 P3 $2 2 ' 2 S2 r 3 F3

P2b P2t S are identified. The wave arrival of P3t 2 hp3t is
3 3 22 2 2 2

predominant on all the seismograms in Figure 10 al 'II2b 2ts
a '2 and a3 '. The arrival of P3 P contrarily is only

predominant on the seismograms of Figure 10 a3' . The

wav, P3b3t 3t, is identified in each seismogram ofwae J2 2 wJ 2'

Figure 10 a1 ' and a2'. It has a period of about 1.6

milliseconds, as specifically marked "A" on the trace of

Nodal Point 217 in the time interval of 8.3 milliseconds

and 9.9 milliseconds. The identification of the wave is

based on the fact that the P wave velocity in the half-space

is 5000 ft/sec, the travel time of 1.6 milliseconds for

the P wave is equivalent to the travel distance of 8 feet.
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Theef rethewav p 3b 3t 3t

Therefore, the wave P 2 P 2 PP is the type of the wave
traveling periodically from the bottom (or the top) face

of the cavity with a motion described by the Bessel function
order zero, through the vertical face of the cavity, to

the top (or the bottom) face of the cylindrical cavity also

with a motion described by the Bessel function order zero.

The ray path of this type of wave is shown in the following

diagram.

'Ii
IJ L

Line B

Figures 11, give synthetic seismograms of the

radial displacement Ur and vertical displacement Uz of

Line B at Nodal Point 253,254,255,256,257,258 and 259
for Model I, II, and III as shown in Figure 7. The
waves P P3t f3t_3b I3b 3t, P 3t 3b_ P3b and the2' 2 2 2 2 2 2 2 J 2

3t_3b 3b 3t 3t 3b 3bmultiples of P2 2 ' P2 P2 P2 P2 PP2 areall
identified in Figure 11 al, Model I, the whole space.
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The reflected and converted waves from the layer interface

and the diffracted from the top rim of the filled drilling

hole, 2t. 3t P 3b 3t P3b 3t 3b 3t P3t 3b 3t 2t
2l2' t2 2' p2  2' 2 2' 2 2 2  2 2 2 23 t 3b -3b 3t 3b 3t 3t 3b 3t 2t

PJ P 2 P2 '2 222'P 2 P 23t 3b 3bPJP2 P2 PJP 2 are identified in Figure 11 a3 for Model

III. The predominant waves observed include: (1) P P3b P 3t
2 2 p2

traveling periodically from the top to bottom along the

vertical face of the cylindrical cavity with a velocity of
5000 ft/sec and a period of about 1.2 milliseconds. (2)
P P 3tP3b P3b travels periodically from the bottom
J2 2 J2
(or the top ) face of the cavity with a motion described

by the Bessel function order zero, through the vertical

face of the cavity, to the top (or the bottom) face of the

cylindrical cavity also with a motion described by the

Bessel function order zero.

The normal applied stress on the vertical face of the

cavity contributes to the radial displacement in a radially

outward direction, (i.e. the sense of direction on the

seismogram is "positive") but the applied stresses on the
end faces of the cavity tend to elongate the cavity in an

axial direction and contribute to the radial displacement

in a radially inward direction (i.e. the sense of direction

on the seismogram is "negative") along the vertical face

of the cavity everywhere. Morever, there are stress

concentrations around both the top and the bottom rims of

the cavity. As the location of the Nodal Point 253 is only

2,5 feet from the vertical face of the cavity and an equal

distance of 3.9 feet from both the top rim and the bottom

rim of the cavity, the first arrival P wave from a minimum

distance between the observation point Nodal Point .253 and

the vertical face of the cavity contributes to the radial

displacement in a radially outward direction; the diffracted
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3t ad3b
arrivals P2  and P2  from both the end faces of the cavity

contribute to the radial displacement in a radially inward

direction. Subsequently, the arrivals of the diffracted
3b 3t 3t 3bwaves P2 P2 , and P2 b2 and their multiples contribute to

the radial displacement to have an oscillatory appearence.
3t 3b 3t 3b

Therefore the arrivals of the waves, P, P2 , P 2 , P2 P2
3b 3t

P2 p2  give an impulsive like wavelet in the time interval

of 0 and 3 milliseconds, and the arrivals of the multiples
~3t~ an 3b 3t

3t 3b and P2 P2 give the resultantof~~ ~ 2h diface 2ae 2
oscillatory radial displacement and followed by a long

period wave train as clearly shown in the seismograms of

Nodal Point 253 of Model I, II, and III (see Figure 11

al, a2 , and a3 ).

As expected, there are no vertical displacement at

every nodal point along Line B, symmetrically with respect

to the two end faces of the cylindrical cavity in Model I,

in the whole space as shown in Figure 11 al'. Because

the applied stresses on the both end faces of the cavity

are equal and in an opposite direction, the resultant

vertical displacement along Line B is therefore zero; Like-

Vise the stresses applied to the vertical face of the cavity

are in the r-direction, the resultant vertical displacement

along Line B is also zero. In Figure 11 a2' ,the vertical

displacement along Line B for Model II, a half space, is
3t

zero until the arrival of P2 P2 ' i.e. P wave is reflected at

the surface of the half-space. The waves for Model III are

complex as shown in Figure a 3'. There are eight principal

arrivals accounted for, e.g. 3b 3t 3t -3t 3ba2 p2  p2 P2' P2 $2' $2 $2 '
3t S 3b 3 tp2bp2t p2bp2tp a 2b 2t , and the

'3 3 2 3 3 2 d 3  3 S 2

multiples of p2bD2tp and p2bp2tS3 ' 3 2 3 3 2

Waves with a period close to 5 milliseconds marked by

"A" are clearly identifiable on virtually all the seismograms

- 0
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in Figure 11 a they are 2b 2t- traveling
3  3 p3 2

periodically along the vertical face of the drilling hole

between the two rims at 2b and 2t with the velocity of

the filled drilling hole.

Line C

Figure 12 gives synthetic seismograms of the

radial displacement Ur and the vertical displacement Uz

of Line C at Nodal Point 293,294,295,296,297,298, and

299. Line C lies in the plane of the bottom face of the

cavity, as Line A lies in the plane of the top face of the

cavity. The locat' ns of these nodal points are shown in

Figure 7. As expected, the radial displacements of

all these nodal points as shown in Figure 12 a are

identical to these as shown in Figure 10 a1 , the vertical

displacements of all these nodal points as shown in Figure

12 aI , are also identical to these of Figure 10 a ,

except the vertical displacements of Line C are in an

opposite direction of these of Line A. The seismograms

of the radial and the vertical displacements as shown in

Figure 12 a2 and a2 ' are identical to these as shown in

Figure 12 a1 and a,', until the arrival of P3tP2 and

P2 P2 as in the case of Line A. In comparison of the

radial and the vertical displacements Line C in Figure

11-12 a3 and a3 ' with these of Figure 12 a and a1 ,
the12 avals of 3b 3t 3t pb - b b2t P
the arrivals of P2 P2 ' P2 P2 ' P2 S2 ' 2  P3 p3  2'

2b 2t 2b 2t 2b and 2b 2t 2b are easily identified
P3 p3 $2' P 3 2 3 p3 P3 2

on the seismograms of Model III as shown in Figure 12

a3 and a 3'.

3t
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Line D

Figure 13 shows synthetic seismograms of the radial

displacement Ur and vertical displacement Uz of Line D at

Nodal Point 193,172,152,131,111,90 and 70 for Model I, II,

and III. As shown in Figure 7, Line D is situated V
diagonally with respect to the top rims of the cylindrical

cavity. For Model III, Nodal Point 193 is in the half-

space, 172 in the layer interface, and 152,131,111,90, and

70 in the weathering layer as shown in Figure 7c. The
3t 3t 3b 3b 3b 3t 3b 3t 3b 3t

wave arrivals P2 ' $2 , P 2 Is 2 , P 2 P2 S2' P 2 P 2 P2 P2 '

3b 3t 3b 3t5  3b 3t 3t
2 P2 2 2 2' PJP 2 P2 PJP2  and the multiples of
3b 3t 3b 3t 3b 3t3b 3t a 3b 3t _3t ar
2 P2 2 2 ' P2 P2 22 2 andP 2 2 PJ 2 are all
identified on every seismogram of Figure 13 a1 and a2,'

Model I, and II. In Figure 13 a , the arrivals at
3t 3b 3% 3t 3bNodal Point 193 include P2 ' P2 ' $ PJP2 '

2b 2t 2b 2 t 2b 2t 2b 2t 2b_2t 2b 2t
P2 P2 P2 P2 $2' P F3 3 P2'P3 3 P3 S 2 ' S3 S3 2' S3 $3 S2 and

the multiples of P2b 2t 2b 2t 2b 2t 2b 2t-

and 3b3t P3t 2 2  2' 3 3  21 2 2' P 3 S2

J2 2 J2

Nodal Point 193 is located at a distance of 2.9 feet

from the top rim of the cavity and at a distance of 8.6

feet from the bottom rim of the cavity. Since Nodal Point

193 is located above the cavity, the applied stress on the

top end-face of the cavity contributes to the radial

displacement at Nodal Point 193 in a radially outward
3t

direction for the arrival of P2 t and the applied stress

on the bottom end-face of the cavity contributes to the

radial displacement at Nodal Point 193 in a radially

inward direction for the arrival of PiP2 "In Figure 13

a3, the high frequency components with a period of - milli-

second are superimposed on the low frequency component as

shown in the seismogram of Nodal Point 193. As Nodal Point

L
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193 is located very close to the top of the cylindrical

cavity, the location is very sensitive to the motion on

the immediate top end of the cavity, therefore, the wave3tP P2 is the type of the wave traveling periodically

from the top rim of the cavity to the axis of the cavity

with a period of 1 milliseconds. On the trace of Nodal

Point 172 in Figure 13 a3 , the high frequency arrivals

with a period around 1.2 milliseconds are superimposing
3b 3t

on top of the low frequency response. The wave P2 P2

is the type of the wave traveling periodically from top

to bottom of the cavity along the vertical wall of the

cavity. The long period wave is shown on all the traces

in Figure 13 a3. This long period waves is identified

as P2b P traveling with the P wave velocity in the shot

hole between the two rims at 2b and 2t. The Nodal Point

152,131,111,90, and 70 are located in the first layer (

weathering layer), all the high frequency arrivals are

filtered out in the seismogram of Figure 13 a3 and a3'

The weathering layer behaves as a low pass filter.

F1 ,3t 3b

In Figure 13 a and a2', seven arrivals, P2 ' P2
S 3t 3b 3b 3t 3b P3t 3b 3t 3 b 3ts 3t 3b 3b 3t 3t
S2  S2 ' P2 P2 P2  2 2 2  P2  2  2 J 2 2 J 2 P2 JP2

~3t 3b 3bp3 tp _3t
and the multiples of PJ2 2J2 P3 2 J 2 are identified,

likewise the arrival of P 2 P2 also is identified on each

seismogram in Figure 13 a2 '. In Figure 13 a3', the
3t 3t 3t 2t 3t 2t. " 2b 2t 2b 2t 2barrivals ofP 2 , 2 P2 P2 P2 ' S2 $2 $2' P2 P2 P2 P2 P2 P2

2b 2t 3t 3b 2t3b_2t 2b 2t
P P  P P and the multiples of P3 P areP3 P3 P2' P2 2 P2  2 2 2 3 3

identified on the seismogram of Nodal Point 193; the arrivals
of 3t 3t P3t 2ti, 3t 2ts, P2b_2t , and the multiples

2' 2 ' 2 P2  P2 P2  ' 3 3 1
of2b 2t

of P3 P3 are identified on the trace of Nodal Poiq-t 172.

3

• 1.
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3t
For the rest of the seismogram the first arrival of P2 Pi

is clearly identifiable. In Figure 13 a' and a2 ,

the wave with a period of about 1.6 milliseconds as marked

by "A" on the seismogram of Nodal Point 172 in a I is
identiied a _3b 3t 3t3bt t 2

identified as PJPb2 P PJP2  on the basis of the travel path
3b 3t 3tisteyp

and the travel time. The wave PP2 P 2 P P2 is the type

of waves traveling periodically from bottom end-face of

the cavity, through vertical face of the cavity, then to

the top face of the cavity with a travel time of 1.63t
milliseconds. The direct shear wave S 2 is clearly

identified on the seismogram of Nodal Point 193 for Model

III, Figure 13, a1 ', a2 ', and a3 '  The long period

waves in Figure 13 a and a3' are P 2b w2'
3 p 3 21 hc

travels with a P wave velocity of the filled drilling hole

periodically along the vertical face of the hole between

the top and bottom rims at 2b and 2t. The shape of the

input forcing function is well preserved on each seismo-

gram in Figure 13 a1 , a2, a3, a, ', a2 ', and a3 ' as

indicated by dash lines.

Line E

Figure 14 shows the synthetic seismograms of the

radial displacement U r and the vertical displacement U z

of Line E at Nodal Point 314,335,357,378,400,421, and 443

as shown in Figure 7. Line E is situated diagonally

with respect to the bottom rim of the cylindrical cavity.

Therefore, the radial and vertical displacements shown

in Figure 14 a1 and a1 are identical to those

displacements in Figure 13 a1 and a1 ', except the

vertical displacements in Figure 14 a1 ' are in the

opposite direction and are negative as shown in Figure

13 al. The seismograms as shown in Figure 14 a2

i ,.
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and a2' are identical to those as shown in Figure 14

a1 and aI' until the arrival of P2tP 2 in Model II, the

half-space. Since the nodal points of Line E are located

in the half space and far away from the layer interface

and the filled drilling hole, the effects of weathering

layer and the filled drilling hole on the early response of

the radial and vertical displacement at these nodal points
3t

of Line E are insignificant. However, arrivals, P2 P21
3b 3t 3b 3t 2b 2t 3b 2bP2ts
2 2  2  2' P2 $2' S2 P2' P3 p3  2 2 2' p3  3 2'

P2b 2t 2b 2b 2t 2b 2and 2b 2t
3nd S $5 2 are identifiable in

Figure 11-14 a3 and a3'.

Line F

Figure 15 shows the synthetic seismograms of the

radial displacement Ur and the vertical displacement Uz of

Line F at Nodal Point 192,150,108, and 66.(Figure 7) For

Model III, Nodal Point 192 is in the half-space, and 150

108, and 66 in the weathering layer. In Figure 15 aS3t 3b 3t 3b, P2P2
and a2 , the arrivals of the waves P2 , P2  S2  , 3b 2

and P -3b 3t P3t 3b 3ta 2 2 P 2 and the multiples of P2 P2 ' and
3b 3t 3t

PP 3 P PP3 are identified. In Figure 15 a3 , the
3t 3t 2b 2t 3b 3t ±3b 3t 2t

arrivals of the waves P2 ' $2 ' P2 P2' P2 P2' P2 P2 P2'
2b 2t 3b 3t 3b 3t 3t 2t
P3-3 and the multiples of P2 P2 , P2 P2 , and P3 P3  are

also identified in the seismogram of Nodal Point 192, which
3t 3b 3t 2b_2tis in the half-space. The arrival of P2 , P ,P , 2 P2

3t 2t , 3t 2t , 3t 2t ' 3t 2t-, - 3b 3t-2 tpa
P22 1 Pi' P2 P2 SI' P3 P3 PI' P3 P3 S1' P2 P2 P2 nd

the multiples of 2b 2t P3b_3t 3t 2t ' _3t2tS'. and
t t 22 2 2 2 2 2 I' 2 2 1-

P2 P2 P2 P1  are identified on the seismogram of Nodal Point

IL.
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150. Since Nodal Point 150,108, and 66 are all located

in the weathering layer,which behaves as a low-pass filter,

all the high frequency responses are filtered out in the

the seismograms of Figure 15 a3 and a'. Several beats

are observed in the seismograms of the the radial displace-

ment Ur in Figure 15 a1 , a2, and a3 .

The beat phenomenon is commonly observed at two

wavetrains of slightly different frequencies beat together

to give the beats and the amplitude modulation. In the

present case, from seismogram at Nodal Point 192 in Figure

15 a,, the period of the envelope of the beats as marked

by "beats" in the time interval of 6.8 milliseconds and

11.8 milliseconds is measured to be 5 milliseconds, and

the period of the amplitude modulation on the seismogram

of Nodal Point 192 in the time interval of 8.6 milliseconds

to 9.3 milliseconds is measured to be 0.7 milliseconds

Therefore, the frequency of the envelope of the beats and

that of the amplitude modulation are found to be about

196 and 1333 Hz, respectively. By knowing these two

frequencies, the periods of these two wavetrains are 1.3

milliseconds and 1.7 milliseconds. Therefore, these two
corresponding waves are identified as P2 P2 , which travels

periodically from the bottom to the top of the cavity along

the vertical face of the cylindrical cavity with a period

1.2 milliseconds and as p 3bP3t t which travels
JP2 2 J2 w

back and forth periodically from the center of the bottom

(or top) end-face of the cavity, to the rim , then travels

along the vertical face of the cavity, to the center of the

top (or bottom) end-face of the cavity through the rim with

a period of 1.6 milliseconds These beat phenomena are

also clearly observed on the radial displacements of Nodal

Point 150,108, and 66. A typical beating phenomenon is

shown in the seismograms.
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In Figure 15 a1 ' and a2 ', the arrivals of the waves

3t 3t 3b 3t 3t 3b 3t 3t 3b 3t- - 3b 3t 3t
2 '2 '2 2  2 'p 2 p 2 p 2 , 2  22 2' J2 2 PJ2'

3t 3b 3b 3t 3t 3b 3t
and the multiples of P2 2 ' P2 P2 $2' P2 P2 P 2 2

pjtp3 p p3t' 22 2t
P 3b3tP 3t are identified on each seismogram of the

J 2 2 J 2
nodal point. The arrivals of Pt p2 are also identified
on each seismogram as shown in Figure 15 a2 '. In Figure3t 3t 3t 23t_ 2b 2t

15 a3 ', the arrivals of P P S22 2 p2  2' 2 s2' p2  2 2'

2b 2t 2b 2t 2b 2t 3b 3t 3b 3ts and the2 p2 $2' P3  3 2 p3 p3 $2' 2 P2 2' 2 p2  2mulipesof2b 2t 2b 2t _3b 3t
multiples of P2 P2 are identified on the

2 2 ~3 312 2 3~3t 2t,seismogram of Nodal Point 192. The arrivals, P2 P2 P

p3t p2 t i, 3t 2t, 2b 2t , 2b 2t , 2b 2tP,
2 1 S 2 521' 3 3 3I' P 3 1 and S3 S3 P1 are

identified on the seismogram of Nodal Point 150. Nodal

Point 108 and 66 are located in the weathering layer, only

the arrival of P3tP2t is shown. In Figure 15 aI '221 1
and a 2 , the wave in each seismogram with a period very

close to 1.6 milliseconds as marked by "A" for Nodal Point

192 in the time interval of 6.8 milliseconds to 8.4 milli-
3b 3t 3t

seconds, is identified as PJP2  PJP2 ' a wave traveling

periodically from the bottom end-face of the cavity, through

the vertical face of the cavity to the top end-face of the

cavity. In Figure 15 a3 , on the seismogram of Nodal

Point 192, 150, 108, and 66, the wave with a period close

to 5 milliseconds as marked "B" on 192 in the time interval

of 6 milliseconds and 11 milliseconds is identified as
2b 2t

P3 P 3 with a velocity of the filled drilling hole. In

Figure 15 a1 ', a2 ', and a3 ', the form of an input step

pulse is well preserved in each seismogram, the amplitudes

of the vertical displacement are larger than these of the

radial displacements. The arrivals of S 3t on the seismogram
2

for Nodal Point 192 in Figure 15 a1 ' a2 , and a3  are

well identifiable.
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Line G

Figure 16 shows synthetic seismograms of the radial

displacement Ur and the vertical displacement Uz of Line G

at Nodal Point 191, 170, 149, 128, 107, 86, and 65. For

Model III, Nodal Point 191 is in the half-space, 170 in

the layer interface, and 149, 128, 107, 86, and 65 in the

weathering layer. The locations of these nodal points are

along the Line G as shown in Figure 7. The locations

of every nodal point along Line G are very close to the

locations of nodal points along Line F. Line F is in the

same direction but with a distance of 0.5 feet away from Line

G. The wave forms of the radial displacements at Nodal
Point 191, 149, 107, and 65 in Figure 16 a1 , a2, and a3
are very similar to these of the radial displacement at

Nodal Point 192, 150, 108, and 66 as shown in Figure 15

al, a2 , and a3 , except the amplitudes of the radial displace-

ment. for Nodal Point 192, 150, 108, and 66 are smaller than

these for Nodal Point 191, 149, 107, and 65. There are

high frequency component responses observed at Nodal Point

170, 128, and 86. In examining the configuration of the

* finite element mesh around Nodal Point 149, 170, and 191,

as shown in Figure 5, these high frequency components

may be resulted from the different arrangements of the

finite element mesh at Nodal Point 170 and Nodal Point 191

as shown in the following diagram:

149

170

191
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So that Nodal Point 170 responses to a high frequence

radial displacement more efficiently than Nodal Point

191 or 149. At Nodal Point 170, it can be viewed as if

two horizontal springs connected with two adjacent nodal

points, contrarily to that at Nodal Point 191, there are as

if four diagonal springs intersected at the Nodal Point.

In Figure 16 aI ' and a2 ' the arrivals of the

3t 3t 3b 3b 3t 3b 3t 3t 3b 3twaves P2 ' $2 ' P2 ' $2 P2 P2 P2 , P2 P2 P2 S2' and
3b 3t 3t3-b3t 3t 3b 3tPJP2 P2 PJP2 and the multiples of 22 2t 2 2 22

and PJPb P2 PJP2  are identified on the seismograms for

Nodal Point 191, 170, 149, 128, 107, 86, and 65. In

Figure 16 a ', for Model III, the locations of Nodal
3

Point 191, 170, 149, 128, 107, 86, and 65 are in different

regionS,therefore, the arrivals of the waves are identified

each Nodal Point by each Nodal Point. The arrivals of
3t 2b 2t 3b 3t 3t 3t 3t 2t

waves P2  P2 P2 P 2 ' P2 P2 P 2 ' S2 S JS2 ' P2 P2 S2 '

3b 3t 2b 2t 3b 3t 3t 2t 3b 3t 3t 2t
S2 S2 P2 ' S2 2 S2' S2 32 2' P2 P2 P3 ' P2 P2 P3 ' P3 P3  2

2b 2t 3t 2b 2t 3t 2t 3b3t P3t 2t
P3 P3 S2, S3 '2 ,2 3  2 t P2 S3 P P2 2 3' 3 3  3'

*3b 2t 3b 3t 3b 2t 3t 2t 3t 2t 3t 2t
P 2 P2 53' S2 2 3 ' S2 S2 53' P3 P3 S3 ' $3 S3 P2 ' 3 S3 S 2'
S 2b $ 2t 3 are identified for Nodal Point 191. The arrivals
3 33

3t 3b 3t 3b 3t 3b 3t 3b 3t 3b 2t
of P2  P2 '2 ' P2 P22' P2 P2 S2' S2 3t 2 3

3b 3tP are identified for Nodal Point 170. The arrival,

2b 2t _2b 2ti, 2b 2t 2b 2t S, and S2b5 2ts,
P2 P2 PI' $2 2 i' P2 P2 P3 ' P2  2 1 2 2. 1'
P 3t p2t P, 3t 2t 3t2t5 , 5 3t 2t 3t 2t 3t 2t_,
3 3 1' P3  3' P3 31' 2 2 3' 3  3  3' 3  3 1'

S3t S2t S are identified on the seismogram of Nodal Point
1 T 3t 2t , 3t 2t , 3b 2tp, 3t 2t149. The arrivals P2 P2 P1' P 2 2 Si' P3 P3 i' P3 P33t 2t,P3 P3 Si are identified on the seismogram of 128... Only

the arrival of P3t-2t- i is clearly shown in the seismograms2 2
of Nodal Point 107, 86, and 65.
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Because Nodal Point 191 is located right on the

vertical interface of the filled drilling hole, the

location is very sensitive to the motion on the top end

of the cavity. The seismogram of Nodal Point 191 in

Figure 16 a3 ' shows that the high frequency components

are superimposed on the long period components. These

high frequency components with a period of about 0.5

milliseconds as marked by "A" on the seismogram of Nodal

Point 191 in a3 appear in the time interval between 10.9

milliseconds and 11.4 milliseconds. As the traveling

path of P is 0.5 foot, and the top end-face of the

cylindrical cavity is in contact with the filling of the

drilling hole (a P velocity of 1000 ft/sec), the high

frequency components likely are excited by P,, traveling

periodically on the top (or bottom) end-face of the

cylindrical cavity. On the other hand, the long period

component in all the seismograms in a3 can be identified
2b 2t

as P3 p3 , traveling periodically between the top and bottom

rims as designated by 2t and 2b along the vertical interface

of the drilling hole with a P wave velocity in the drilling

hole of 1000 feet/sec and a period of 5 milliseconds.

Nodal Point 149, 128, 107, 86, and 65 are located in the

weathering layer, therefore, most of the high frequency

response are apparently filtered out.

Line H

Figure 17 shows the responses of both the radial

component and the vertical component at Nodal Point 190,

140, 106, and 64 along Line H. All the nodal points

along this line are on the top region of the cylindrical

cavity source. For Model III, these points are located

in the filled drilling hole. Similar to that of Line G
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and Line F, a beating phenomenon is again observed

in the time history of the radial displacement at

these four nodal points along Line H for Model I and

II. In the present case, these beats have much

smaller amplitude modulations-than these of

Lines F, and G. As nodal points along Line H is located

close to the axis of the cylindrical cavity, therefore,

the radial motion of the top end-face of the cavity

contributes to the vertical displacement significantly.

The high frequency response due to the radial motion of the

end-faces of the cavity is clearly observed on the synthetic
- 3b 3t 3t i lal

seismograms. The wave, P P t 3t, is clearly
J 2 2 PJP2

identified in the seismogram of the vertical displacement3b 3t 3t.i
Uz , which are very similar to that of P P 2 P P in

Figure 15, and Figure 16. For Model III, Figure

17 a3 ', because the nodal points are located in the

drilling hole, which is filled with unconsolidated material,

the amplitudes of both the radial and the vertical

displacements are very much amplified, for instance an

extremely large amplitude wave is observed at Nodal Point 190.

The wave is attenuated rapidly as the observation point

moves away from the cavity (see both in Figure 17 a3

and a3 '). In Figure 17 a3 , at Nodal Point 148, the2b 2t -2b 2t
waves P3 P3 ' and P2 P2 apparently travel back and forth

periodically along the vertical interface between the two

rims as designated by 2t and 2b. At Nodal Point 148, 106

and 64, the most pronounced arrivals are indicated on the
~3t~ 2t_ 2t wt eido

seismograms. The arrival of P3 P 2
3 3 2 wt prooabout 5 milliseconds is indicated on each seismogram of

Nodal Point 148, 106, and 64.
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Line I, J, K

Figures 18, 19, and 20 give synthetic seismograms

of the radial and the vertical displacements at the nodal

points along Line I, J, and K. These three lines are

located in the region bellow the bottom of the cavity.

Geometrically the locations of these nodal points along

these three lines are symmetric to those of nodal points

along Line F, G, and H. For the whole-space case, the

symmetrical responses of the radial and vertical displace-

ments are displayed in a1 and aj of Figure 18, 19, and

20, and can be compared with the results of a1 and aj of

Figure 15, 16, and 17 to be exactly identical. For

the half-space case as compared with the whole-space case,

the only difference is the arrival of additional reflected
3twave P2 P2 from the surface of the half-space as indicated

on each seismogram for each nodal point as shown in a2 and

aj of Figure 18, 19, and 20. For Model III, the layered

half-space case, the synthetic seismograms in general are

quite similar in appearance as these for the whole-space case,

except the additional diffracted arrivals.

All the above interpretations are limited to the

arrivals in the time interval of 0 to 15 milliseconds.

'I
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7. CONCLUSION

The present study has demonstrated the possibility of

obtaining the numerical solutions for a finite length energy

source within a half-space, and a layered half-space by means

of the finite element method. The significant results

regarding the displacement field due to a finite cylindrical

cavity source in a whole-space, a half-space, and a layered

half-space, may be summerized as follows:

1). For the observation points inside the medium, the

reflected waves from the surface boundary of the half-space

for the velocity of the medium assumed does not seem to have

significant effects on the amplitude of the wave.

2). The amplitudes of both the vertical and radial

displacements at the observation point on the surface of the
half-space model are much larger than these at these corres-

ponding observation points in the whole-space.

3). The wave forms of the transient response strongly

depend on the dimensions of the finite cylindrical cavity, i.e.

the radius of the cavity, and the length of the cavity.

4). The type of P wave traveling periodically from the

top rim to the bottom rim of the cavity along the vertical

interface of the cylindrical cavity and the type of P wave

traveling periodically from the bottom (cr the top) face of

the cavity with a motion described by the Bessel function

order zero, through the vertical face of the cavity, to the

top (or the bottom) face of the cylindrical cavity also. with

a motion described by the Bessel function order zero are

dominanted in all three models.

-L'---..
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5). There are no vertical displace-ents U at any point

along the middle plane, which is symmetrical with respect to

the two end faces of the cylindrical cavity, in Model I - a

whole-space.

6). For Model III - a layer half-space, the long period

wave is clearly identifiable, traveling periodically along

the vertical face of the drilling hole between the two rims,

the rim of the contact at the layer-interface and the top

rim of the cylindrical cavity.

7). All the high frequency arrivals are filtered out

in the seismograms at those observation points located in the

weathering layer. The weathering layer behaves as a low

pass filter. I

8). The shape of the input forcing function is will

preserved on each seismogram of the vertical displacement

Uz but not the radial idsplacement Ur -

9). The beat phenomenon is clearly observed on the radial

,,displacements of these observation points located in the upper

* region of the cavity source.

10). The amplitudes of both the radial and vertical dis-

placements are extremely large at these observation points close

to the cavity in the filled drilling hole, but are attenuated

rapidly as the observation point moves away from the cavity.

11). Shear wave can be generated frcm the finite length

cavity source with only normal stresses applied on the-

surfaces of the cavity. The arrival of shear waves are

clearly identifiable at these observation points in the region

along the diagonal line of the cylindrical cavity.

+! ... . ." .. ._ .... . . ... . .... . .. . ... :*.. .. ., .. ..... .. .. . _j - ... . ....'
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ABSTRACT

Three dimensional model experiments are performed to study the

acoustic-elastic wave scattering and diffraction by a vertical elastic

cylinder immersed in a fluid due to a trainsient acoustic point source.

The direct, transmitted and -iffracted waves in the volume exterior to

the cylinder are -learly observed. Particularly, the diffracted longi-

tudinal, tranxvor' , Rayleigh and incoustic (creeping) waves whic:h propa-

age near the cylindrical interface are observed together with the

waves transmi.tted through the cylindur. The moveout of the diffracte"

waves for non-symmetric so)urce-receiver configurations is shown.

Splitting of each diffraction at non-symmetric receiver positions is

verified and explained as a result of diffracted energy propagating in

both directions around the cylinder. Helical diffracted waves propa-

gating up and down the cylinder, as predicted by theory, are verified

for the first time.

Three dimensional ray path and wavefront equations are given ioi

all of the waves encountered in this experiment. The amplitude spectra

maxima are shown to be related to the relative arrival times between

the various events observed on the data trace. Envelope dectection and



homomorphic filtti-in H irfn applied aiid shown to provide informatiun

or. the aryival t-init; i:( (n tie temporal duraiti of the observed

tri'msm .t ted anld Jdiat ed ~~t~
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INTRODUCTION

Bodies possessing a cylindrical shape are of considerable impor-

tance in the theory of scattering and diffraction of acoustic and

elastic waves. Many man-made structures, such as, mine shafts and

drifts, fiber reinforced materials, underground and ocean-bottom

pipes, cast metals containing inclusions or imperfections and missile

silos, as well as such natural formations like salt domes, mineral

deposits, igneous intrusives, caves, sink holes, seamounts and coal

gasification cavities may be approximated geometrically by a cylindri-

cal shape. Since the analytical solution to the three dimensional

scattering and diffraction of an elastic cylinder embedded in either

an elastic or an acoustic medium due to a transient point source of

energy is intractable, the alternative method of an experimental model

study provides a means of obtaining a physical understanding of the

problem. Moreover, an experimental study may provide a means to ver-

ify that the waves predicted by two dimensional theory do exist in

both two and three dimensions.

The basic physics of scattering and diffration at various discon-

tinuities is dicsussed by Keller(1958, 1962), Keller and Karal(1964)

and Kouyoumjian (1975). Excellent reviews of the scattering and dif-

fraction of fluid-loaded structures are provided by Uberall and

Hwang(1976), Uberall(1973) and Neubauer(1973). These reviews are lim-

ited to discussing the analytical solutions to simple acoustic and
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elastic problems by the method of integral transforms and they discuss

the use of surface waves propagating on plane and curved boundaries.

The principal analytic solutions which have been obtained, only begin-

ning to scratch the surface of acoustic and elastic scattering and

diffraction by cylindrical and spherical bodies, are for sound pulses

diffracted by a circular cylindrical cavity(Chen and Pao, 1977), for

sound pulses diffracted by a rigid and a soft cylinder embedded in a

solid(Gilbert,1960 and Gilbert and Knopoff, 1959), for three dimen-

sional acoustic wave scattering and diffraction by an open-ended ver-

tical soft cylinder in a half-space(Teng, Kuo and Gong,1975) and for

the scattering and diffraction of an infinite cylindrical cavity in an

elastic medium due to an impulsive elastic P wave source(Hwang and

Kuo, unpublished). These solutions provide a basis for the under-

standing of the manner in which incident impulsive energy is scattered

and diffracted by cylinders, but they fall short of the total problem

of showing the interaction of the transmitted waves through an elastic

cylinder with the diffracted waves around the cylinder. Failure

occurs because the boundary conditions used prohibit energy from being

refracted into the cylinder. Incorporation of transmission into the

problem leaves a characteristic equation to solve whose roots are

extremely difficult to extract. Except for the solutions by Teng and

Kuo(1975) and Hwang and Kuo(unpublished), the previously mentioned

solutions are for two dimensional problems.
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Experimental model studies have provided the verification of the

existence of circumferential diffracted creeping waves and of dif-

fracted Rayleigh waves (Barnard and McKinney, 1961, Faran, 1951, Bun-

ney, Goodman and Marshall, 1969, Harbold and Steinberg, 1969, and Neu-

bauer, 1968). These experiments were specifically designed to study

individual diffractions by using a bistatic source and receiver

configuration with the transducers oriented to the cylindrical surface

at the critical angle at which the diffracted wave to be verified is

excited. Through this orientation the desired diffraction event is

enhanced while all of the other arriving events are less enhanced in

order that they will not interfere and confuse the verification of the

diffraction. Except for the work of Steinberg(1969), all of the

experiments were performed for two dimensional cylinders,i.e. the

source and receiver were kept coplanar. Another drawback of the pre-

vious experiments designed to study diffractions on cylinders is that

long monochromatic tonebursts were used as sources which were long

compared to the characteristic dimension of the cylindrical scatterer.

Sachse(1974), Sachse and Chian(1974) and Pao and Sachse(1974) used a

short transient pulse to study backscattered and diffracted ultrasonic

pulses from elastic and fluid cylindrical inclusions in a solid med-

ium. Verification of a circumferential diffracted S wave propagating

at a fluid-solid interface for the case of a fluid inclusion in a

solid medium was obtained.

-3-
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This thesis addresses the acoustic-elastic scattering and diffrac-

tion of an infinite elastic cylinder immersed in a fluid medium due to

a simulated transeint point source.

ACOUSTIC-ELASTIC EXPERIMENTAL MODEL
9

Model System

*
The experiments are performed in an acoustic model tank which mea-

sures 24' long by 18' wide by 12' deep (Figure 1). By suspending the

source, the receiver and the elastic cylindrical model in the center 3

sq. ft. of the tank, the sides and the bottom are far removed to pre-

vent the recording of unwanted reflections. In the present experi-

ment, using a rectangular coordinate system, the source and the

receiver can be moved in both directions along a system of rails using

the position of the cylinder as the origin. For the cylindrical sys-

tem, the source transducer is used as the origin and the receiver is

rotated about the source at a radius r. In both systems the vertical

movements are achieved by raising or lowering the transducers attached

to the rods. Both the source and the receiver can be rotated verti-

cally and horizontally about their fixed positions in space to simu-

late a point source or a line source. Through the rotation of the

source in a horizontal plane in degree increments and summing the

recorded data traces for each increment, a line source can be simu-

lated because a narrow beam transducer is used as the source. If, for
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each horizontal increment, the source is rotated vertically in equal

increments and these data are summed, a point source is simulated.

The source and the receiver are suspended at a depth of one foot or

greater below the free surface to eliminate unwanted reflections from

the surface. A cylinder of 4.5 ft. in length is used. The source and

the receiver are kept far enough from each end of the cylinder so that

diffrations from the ends do not interfere with the arrivals of pri-

mary interest.

The source and the receiver used in the experiments are immersion

transducers manufactured by Panametrics, Inc.. These transducers mea-

sure 1.25 in. in length and 0.625 in. in diameter. The element used

is a 0.5 in. diameter PZT (Lead-Zirconium-Titanate) ceramic which is

backed by a specially designed tungsten-doped epoxy resin. Figure 2b

displays a typical source wavelet for this type of transducer in The

pulse mode along with its amplitude and phase spectra as shown in Fig-

ure 2a. The pulse emitted from the transducer used as the source is

short, approximately 2 psec. duration, and the radiation patterns

are about 10 db. down at 100 from the transducer axis creating a nar-

row directed beam of energy (Figure 3). The lack of significant ring-

ing, as seen in the wavelet in Figure 2b, when the transducer is

pulsed by a narrow, 1 psec., high voltage (approximately 80 volt)

pulse is obtained by highly damping the transducer using a tungsten-

doped epoxy resin to back the PZT ceramic disk. This resin is

-6-
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designed to match the impedance of the PZT ceramic allowing 100% of

the energy to be transmitted at the back of the ceramic. Since the

epoxy has a well determined velocity, by doping the epoxy with tung-

sten dust the density of the resin can be increased enough that the

impedance of the resin matches the impedance of the PZT ceramic. How-

ever, the epoxy has a low Q which completely attenuates the signal

Itransmitted at the back of the ceramic before it reaches the ceramic

following reflection from the rear casing. These transducers were

chosen specifically because they emitted a short almost symmetric

pulse when used in the pulse mode. This type of pulse is desired

because it allows greater resolution between arrivals.

Data Acquisition System

The experimental data acquisition system is shown in Figure 4. It

uses an HP-214A pulse generator to pulse a Panametrics immersion

transducer with a narrow, 1 psec., high voltage pulse to provide a

narrow, 2 psec, source wavelet (Figure 2b). The received signal,

which is scattered and diffracted from the cylinder model, is first

received by a Panametrics immersion transducer, then it is pre-ampli-

fied, then amplified 20 db. by an HP-450A amplifier. It is then fil-

tered by a 100 KHZ. high pass RC Rockland filter before it enters the

Tektronix sampling unit for reduction to an analog signal compatible

with the 8 bit A/D converter. Since the center frequency of the

transducer pulse is in the megahertz range(see Figure 2b), a Tektronix

Ii
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Tektronix 585 oscilloscope Hewlett Packard 214A

with a Pulse Generator
ISI Sampling UnitSIG. SIG. TRIG. TRIG. PULSE
IN OIN N OUT OUT

SRockland 100 KHZ Exact 5 MHZ LIN/LOG

High Pass Filter Function Generator
TTL TRIG.

iHewlett Packard 8 BIT A/D Converter

450A Amplifier 1024 Word Memory

8wBIT Paper Tape

Pre-amplifier IBM ag Tape
9 Track, 1600 bpi.

Receiver Suc

Transducer Tran sdu ce r

Figure 4 Data Acquisition System
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585 oscilloscope with a ISI sampling unit plug-in is used to slow the

signal down to a recordable level. A replica of the input signal to

the sampling unit is output as a lower frequency analog signal which

is digitized.

*
The analog output signal from the sampling unit is input into an 8

bit analog-to-digital (A/D) converter which has a memory of 1024 8-bit

words. Since the desired signal requires more than 1024 samples to

record the entire signal, the A/D conveter has a built-in option which

allows the recording of successive records of 1024 samples by counting

(N-1)21024 samples before beginning to digitize the signal (N = the

number of the data group which is desired). After each data group is

written into the memory of the A/D converter, it is read out onto an

8-bit paper tape which is then read into a PDP 11/50 computer for the

appropriate pre-processing prior to analysis on an IBM 360-91/75 com-

puter. The pre-processing performed on the PDP 11/50 consists of

merging and editing the appropriate data groups together to form one

data record for each receiver position recorded. If the data were

clipped, this record would be read to paper tape and the amplification

factors would be adjusted to record an unclipped record. Once

recorded both clipped and unclipped records are read into the computer

and corrected using a scaling program to obtain the final unclipped

record of the data trace for that receiver position.

I-



Model

The model used is a 2.0 inch,. 4.5 feet long, stainless steel cylin-

der which has a longitudinal wave velocity of 18996 ft/sec and a tran-

sverse wave velocity of 10170 ft/sec. Three dimensional scattered and

diffracted fields of a simulated acoustic point source due to a cylin-

der are studied: (1) the 2D coplanar case; (2) the 3D non-coplanar

case. Receivers are placed in the same horizontal plane as the source

for Case (1) and for Case (2) they are placed in a horizontal plane

different from the source. The non-coplanar case is particularly

designed to study the helical waves. The coplanar case simulates the

scattering and diffraction from an infinite elastic cylinder immersed

in a fluid due to an acoustic line source parallel to the cylinder

axis.

The geometrical configuration of the source and the receivers for

both the coplanar and the non-coplanar cases are shown in Figures 5

and 6. The same azimuthal receiver locations are used throughout the

experiment. Only the horizontal plane of the receivers is altered.

In order to obtain data in the illuminated zone the source and the

receiver locations were changed to 6R0 as shown in Figure 6.

The configurations of the source and the receivers in this study

are divided into four regions. Region I consists of receivers at azi-

muths 00 to 300 on a circular arc of 3.5R 0 about the cylinder for a

source located 3.5R0 from the cylinder axis. These receivers are

-12-
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' 30
.0

5105

source

Figure 5: Source and receiver configuration for

regions I, II, III.

GSB = Geometrical Shadow Boundary

SRB = S Reflection Boundary
PRB = P Reflection. Boundary

SdB = Diffracted S Wave Boundary

PdB = Diffracted P Wave Boundary
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120

05

150,

source

Figure 6: Source and receiver configuration for

region IV.

GSB = Geometrical Shadow Boundary

SRB = S Reflection Boundary

PRB = P Reflection Boundary P.
SdB = Diffracted S Wave Boundary

PdB = Diffracted P Wave Boundary
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all located in the geometrical shadow zone beyond the geometrical sha-

dow boundary(GSB). Regions II, III and IV are all within the illumi-

nated zone. Region II has the source located at 3.5R 0 with the

receivers also at 3.5R 0 at azimuths 350 to 55
°. This region is bey-

00
ond the S Reflection Boundary CSRB) where reflected waves are not dec-

tected but diffracted waves are detected. Region III has the source

located at 3.5R0 while the receivers are on a 4.5R0 circular arc

at azimuths 75° to 1050. This region is within the S and P Reflection

Boundaries(SRB and PRB) where critically reflected and diffracted

waves propagate. For Region IV, as shown in Figure 6, the source is

located at 6R and the receivers are placed at azimuths 120* to 160*
q0

6R from the cylinder. This region is within the boundaries for P

and S wave diffractions where only reflected and transmitted waves

propagate. Figures 7 display the interpreted data for the Region I,

the shadow zone(SZ). Figures 8,9 and 10 display the interpreted data

for Regions II, III and IV located in the various parts of the illumi-

nated zone(IZ).

ANALYSIS, INTERPRETATION AND DISCUSSION

Geometry of Raypaths(Wavefront Parametric Equations)

Definition and notation of various types of waves

The following symbols are used to define. the various types of

waves in this thesis. K is used to denote the acoustic waves propa-

gating in the acoustic medium outside the elastic cylinder. P and S

are used to denote the longitudinal and transverse waves propagating

-15-
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inside the elastic cylinder. Pd and Sd denote the diffracted

longitudinal and transverse waves which propagate at the cylinder

interface. Kd and Rd denote the diffracted acoustic wave and

the diffracted Rayleigh wave ,respectively.

p

Combinations of the symbols K, P, S, PdP Sd! Rd and Kd

are used to describe the ray paths of the waves interpreted in this

study. The direct acoustic wave which has no interaction with the

cylinder model is denoted by K. KKr denotes an incident acoustic

wave, K, reflected from the cylinder. KPK denotes an incident

acoustic wave, K, refracted into the elastic cylinder as a longitu-

dinal wave, P, and refracted into the acoustic medium as an acoustic

wave, K. Analogous to KPK is KSK , the difference being the wave

travels as a transverse wave, S, inside the elastic cylinder. Waves

which are multiply reflected a P waves inside the elastic cylinder

are denoted by KnPK, where n equal the number of P wave ray paths.

Similarly, KmSK denote multiply internally reflected S waves with m

being the number of S wave ray paths. points inside the elastic

cylinder. Diffracted waves are denoted as follows: KP K is theI d
diffracted P wave; KS dK is the diffracted S wave; KRdK is the

diffracted Rayleigh wave; KKdK is the diffracted acoustic wave.

Full circumnavigations of the cylinder by the various diffracted

waves are denoted by KPd1K and similarly for the other diffrac-

teins. For non-symmetric source-receiver configurations , as shown

in Figures 5 and 6 the diffractions propagate in both directions.

-21-



The front diffraction( the shortest path) is denoted by KPdKf

and the back diffraction(the longest path) is denoted by KPdK'.

the same symbolism is used for all of the front and back diffracted

waves.

Direct Waves

The direct waves, K,are only observed in the illuminated zone,

i.e., at receivers in Regions II, III and IV. In Region II, K

arrives at approximately 112 psec at 350 coupled with KR dKb

(see Figure 8). At 40e, K arrives coupled with K3PK and again at

550 coupled with KPSK at approximately 105.5 Isec. At 450, K is

not visible. There is a data void from 107 to 108.25 psec. Des-

tructive interference as well as low source strength account for the

loss of data where K should appear. Unlike Region II, K arrives

among the first arrivals in Region III(see Figure 8). It is coupled

f
with KPK, K2PK and KP K arriving at approximately 109.25 psec

d

at 750 for the coplanar case. Region IV is devoid of K arrivals due

to the source radiation pattern and the geometrical configuration

used.

-22-
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Reflected Waves

Region II receives no reflected events, KK r, because this

region is beyond the critical reflection boundaries for P and S

waves. Critically reflected P and S waves are excited beyond the P

and S diffracted wave boundaries. The most prominent KKr arrivals

* appear at receivers in Region IV. They are the first arrivals and

their amplitude is much greater than the diffracted and refracted

wave arrivals. In order to show all of the arrivals, the KKrr

* events are displayed clipped.

The wavefronts for the reflected waves, KKIrp can be described

parametrically. According to Huygens' Principle the surface of the

cylinder will have and an infinite number of secondary sources when

the incident energy from the source irradiates it. Let

I ,, be the coordinate point of the secondary source on

the surface of the cylinder. Let P(x,y,z) represent a point on the

advancing wavefront of the reflected wave from the secondary sources

on the cylinder's surface. The length of the incident ray from the

source, S(O,0,0), to the cylinder is given parametrically as

R i  (Yo - 2aY 0cosa + a2sec2o)k 
(1)

-23-
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where Y is the y coordinate of the offset cylindrical axis and a
0

is the radius of the cylinder. The parameters used to describe the

wavefront are 8 and *(see Figure 11). Parametrically, the point

Q(4,q,)on the surface of the cylinder is given as

= asine (2a)

= 0- acose (2b)-

= atanO (2c)

From the surface of the cylinder, the general equation for the

expanding wavefront in three dimensions from Q(t,q, ) is

2 2 2 2(x- + (y-) + (z- R)= (3)

where R is the radius of the expanding wavefront at any point

P(x,yz). In order to describe the surface of the wavefront due to

all of the secondary sources at a given point P0(x0,Y0,Z0 ),

equation (3) is differentiated with respect to 8 and * and then
these equations are solved along with equation (3) for the coordi-

nates x, y, and z. This solution provides the coordinates of the

point P0 Cx0oY),Z0 ) on the wavefront of the reflected

waves,KKr . Differentiating equation(3) we obtain

-24-
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&(xa - t)cose + a(yo - rl)sin6 =-RaR/Be (4a)

a(zo - C)SeC20 RR8 (4b)

The radius of the expanding wavefront for KK ris

R, = c2t - R. (5)

where t is the time variable, c is the acoustic velocity of the fluid

surrounding the cylinder and R. is the length of the ray, or the
* 1

vavefront radius, from the source to the cylinder as given in equation

(1). By substituting equations (1), (2) and (5) into equations (3)

and (4) and solving for x, y and z, we obtain the following solution

for a point P 0 (X0,y0,z) on the wavefront of KK r

x + R (R. Y sin~cos8 ±'sine(l - R,
0 1 ii

Y 2 sin2O - a2R. 2tan2)k1 (6a)0

YO n + R i (R Ysin2e *CoSe(I R7n2

Y Zsinze azR:-2tanz ) ) (6b)
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z 0  + aR1 R 
1tan* (6c)

Equations (6) describe the three dimensional wavefront of the waves

reflected from the cylinder. If 0 = 0 equations (6) reduce to the

two dimensional wavefront and ray path equations as follow:

I

x + R (R. iY 0sinecos8 ± sine(l - R- 2

Y 2sin2 e)2  (7a)

YO = + R-(R Y sinZBF cose(1 - Rf 2y2Sin29)1) (7b)

z 0 (7c)

R. = (Y0
2 + a2 - 2aY0 cos) (7d)

Refracted Waves

Refracted waves are not recorded in this study because the

receivers are restricted to recording in the fluid exterior to the

cylinder. The parametric wavefront equations are given for com-

pleteness. The radius of the refracted waves expanding wavefront is

given as follows

-27-



R2 = yp(ct -R) Y v/c. (8)

where v is the velocity of the refracted wave. For the refracted P

wave, KP, v = a and for the refracted S wave, KS , v = . The

length of the incident ray, Ri, is given by equation (1) and the

point Q(QCC) on the cylinder's surface is qiven by equations

(2). Substituting equations (1), (2) and (8) into equations (3) and

(4) we obtain the parametric equations for the wavefront of the

refracted wave (P or S) at P0 as follows:

x0 = + R2(R i-Y0sincose _ sinO(i y 2
p

R 2 y 2 sin2O - y 2a2R'72tan2$)h (9a)
i 0 p I.

y= + R2 (R i-Y 0sin2e: cose(l - yp2R i 2Y02

sin 28 - y 2a2R-2tan*)1) (9b)
p1

z= + ypaR2 R-1 tan* . (9c)

For equations (9) to apply, e and * are subject to the condition

that:

0 < O nc < sin' (v/c) (10)
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where v is equal to a for KP and P for KS.

Transmitted Waves

The transmitted waves are due to the numerous combinations of waves

refracted inside the cylinder before they are transmitted (refracted)

into the fluid medium outside the cylinder in which the recording is

being done. The secondary source points Q(Q^1C) on the surface

of the cylinder are redefined as follows (see Figure 12):

=asin(e + e.d (1lia)

Y 0 acos(O + 0 d(llb)

=atanO + b. (ic)

b, 2a2sin(O /2)tan /Y sinS (lid)
I 2. 0

e 7r 2(sin (yiYosinS/(y 2 + a2 
-2&Y cose)) (Ile)

-29-
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where i = 1 for P waves and 2 for S waves and

¥1 = a/c; Y2 = P/c; eti = sin l(ysinein (lf)

For a given ray path defined by an initial e and *, the three

dimensional ray paths interior to the elastic cylinder trace out a

helix on the surface of the cylinder. Figure 12 defines the parame-

ters to be used to obtain equation (lid). Figures 13, 14 and 15

show thw plan views of the three triangles used to obtain the fol-

lowing relationships leading to equation (lid).

= Ri  (Y0
2 - 2aY0cose + a

2 seac 2O) (12)

CD i  (Y0
2 + a2tan2) (13)

QC a = cylinder radius (14)

= -SCQ (15)
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Using equations (13), (14) and (15) we can rewrite equation (12) and

solve for cos*l:

R2 = D2 i + a2 - 2aDi cos*l (16)

cos*l = -Yocose(y20 + a2tan2#)"h (17)
€0

C

T2 = ; coss1 = a/T2  (18)

T2 = a(Y
2
0 + a2tan2)h/Y0sinO (19)

T1  HQ =(T 2  a) (20)

T1  a(Y20 sin
2e + a2tan2 ) /Y0 cose (21)

T = atane (22)

tan*2 = (T 1  TZ 3)/T 3  (23)
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tan*2 = atan@/Y0sin8 (24)

bi  QBtan*2  (25)

B 2asin(el/2) (26)

Using equations (24), (25) and (26) we obtain equation (ld) for the

pitch of the helix: For the first transmitted P wave, KPK, the

expanding secondary source radius is:

R4= ct - R. - 2(c/a)azsin(e1)(1+ a2tan2o/Y02sin2e)h (27)

Similarly, the expanding radius for the first transmitted S wave, KSK, is:

R5 = ct - R. - 2(c/p)a2sin(e2 )(l+ a2tan2 /Y22) (28)
5 i22

Substituting equations (27) and (28) into equations (3) and (4), we

obtain the parametric wavefront and ray path equations for KPK and

KSK as follow:
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= 0 M(Z + Z 2)/(l + y i))cos(e + et) sin(e + 9.)

(12-((Z I + z 2 )/(1 + Yi )) 2 
- (z0  C)2) (29a)

Yo - MCZ + z 2)/(l + Y.))sin(e + 9.) F cos~e + 9.)

*(R 12 - ((Z 1 + Z 2)/(1 + Yi )) 2 - (;E 0 C)2)k (29b)

z 0 R iatan i(R.i (2ac/c.i)sinC8.i/2)(1 + a2tan2 //y0 2

* sj29)) /Yosiae + 2asin(e./2)) (29c)

= R.C(-ac/c.)(1 + a2tan2o/Y 2) SY cos(e /2) + (2a c/c.

Y02)sin(8./2)tan2j(j + a2tan 2 p/Y0 
2Sini29) 'csc2ocote

+ Y 0R isine) (29d)

Z 2  (z0 - C)(aYitan~cos~e ./2) /Y 0sine - (a/Y 0)tan

csc~cot~sin(e 1/2)) (29e)
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Y. = (Y. aY0
2sin 2O yiyOCOSO(y0

2 + a2 -2aYocose))

/((Y 2 +a 2 
-2aY 0 cos6( 0 

2 + a2 -2aY 0case - y2

sine9) . (29f)

For the KPK wavefronts and ray paths use equations (28) and(29) with i

= 1 and j = 4. Similarly for KSK use i = 2 and j = 5 in equations

(28) and (29).

Multiply internally reflected and converted transmitted wavesr

To obtain these wavefront and ray path parametric equations, we

again must redefine the secondary source points Q(t,n,C) which

are on the surface of the cylinder as:

=asinCO + le~ + me2  (30a)

r Y 0  acos(8 + 10 1 me 2) (30b)

w tan# + 19e1 + "'92 (30c)
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1 and m take on integer values which state the numuber of complete

internal P and S wave ray paths that have been completed. The expand-

ing radius of the secondary wavelet for these type of transmitted

waves is given by:

R =, ct - R .L- 2a(l+ a2tan 2*/y 0
2sin2O) ((lc/a)sin(O /2)

+ (ac/P)sin( 2 /2)) (31)

Substitution of equations (30) and (31) into equations (3) and (4)

yields the parametric wavef rout and ray path equations for the KlPmSK

transmitted waves:

X 0 = ((Q + Q 2 )/(1 +1lY +Y 2))cos(e + li + me2)

±sinCO + 181I + Me2 )(R I'MZ (Z - 0)2 - ((Q1 + Q 2)MI + 1Y I

+ my))' (32a)

YO n ((Q1 + Q2 )/(' + 1Yl + my2 ) )sin(e + 181 + me 2)

Cos (8 + 181 + me )(R 1*
2 

-(ZO - C)2 -((Q 1 + Q MIC +

ly I + *Y2))9) (32b)
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2 0 = + R 1 ,(aR .- 'Y0 tan~osin6 - 2a 2 tan ((lc/a)sin(e 1 /

2))(1 +a 2tan2o/y 0  esn2)) / 0 sine(Y 0sin6 + 2a(sin( 1 /2) +

sinC 2 /2))) (32c)

Q1= (20 - C)((a 2 tan20/Y~sin8)(Y cos(8 1/2) + Y2 Cos (E)2/2))

- 2a2tano/Y 0)(sin( 1 /2) + sin(8 2/2))) (32d)

Q2 R1 ,'(Y 0R i -1sin6 + ((lc/a~sin( 1 /2) + (mc/P)sin( 2 /2))

(1+ a2tan2o/y 0 2in28) (2a3 /Y 02)tan2oCSC2ecote +

(1 + a 2 tan2 o/y 2 sin2 e)((lc/a)y cos(e /2) + (mc/P)Y 2

coOO2/2))) .(32e)

Y Iand Y 2are given by equation (29e). Equations (32) will pro-

vide the vavefronts and ray paths for all of the transmitted waves.

If 1=1I and.m = 0 or 1 =0 and. 1 are applied to equations (32) we

obtain equations (17) for KPK and ICSK, respectively. If we let 0

0 in equations (29) we obtain the two dimensional equations as fol-

lows:
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x ((Z1 + Z 2)/(l + Y1))cos(e + 0.) ± sin~e +0.)

Cr- M(Z1 + z2/l+ -i)) (Z- (33a)

y n - (Z1 + z 2)/C1 + Y. ))sin( + 0 )cos(8+6)d

Cr2 - ((Z I + z2/l+ Y. ))2 -Z Cz - (33b)

z 0 (33c)

ZI r.C Y0r. '-sine - (ac/c..)y cos(e./2)) (33d)

z2  0 (33e)

Y . = see equation (29f) (33f)

r c -r Cc/C )2asinC0./2) (33g)

r Y 0 2 + S2 - 2&Y 0cos0)3 . (33h)
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The following Figureq 16 and 17 display the wavefronts, ray paths

and caustics generated by the various transmitted waves according to

the two dimensional equations obtained from equations (32) by allow-

ing * to become 0. These waves are identified in the data in Fig-

ures 7 through 10. All transmitted converted waves, which have the

same number of P and S ray segments interior to the cylinder, arrive

simultaneously at the receivers ,.e.g., KPSK and XSPK and K2PSK,

XPSPK and KS2PK arrive superimposed as single wavelets. Figure 18

shows the ray combination for the simultaneous arrival of KPSK and

KSPK. The interpreted data are labeled KlPmSK since these waves

arrive simultaneously. The form of the transmitted mode converted

waves, KlPmSK, varies greatly between receivers as shown in Figures

7 through 10. However, the KlPK and KmSK homogeneous transmitted

waves retain their waveform between receivers. The variance of the

waveform character for the KIPmSK events and the retainment of the

waveform character for the K1PK and KmSK events is noticeable by an

inspection of the data received in Regions I and II as displayed in

Figures 7 and 8. Transmitted waves are received in all four

regions. Their interference with the diffracted waves is most not-

iceable in Regions I and II. It is within these two regions that

the diffractions retain enough energy so that they are not masked by

the transmitted waves as they are in Regions III and IV.
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a.) KPK, t. =.75 usecs.' U.) K2PK, t =75 usecs.

c. K3K t 7 ues

c.) KPK K3PK t t 75 usecs.
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b.) K2SK, t 120 usecs.

K.,

Figure 16b. Transmitted wave-
fronts KSK, K2SKK3SK

K.aC 20ues
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d. .1P j SS

I t 80aes 80 usecs. t 80 usecs.

Figure 17: Transmitted wavefronts
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KPSK (KSPK)

11

S/

Source

Figure 18: Ray paths showing the simultaneous
arrival of KPSK and KSPK
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Diffracted Waves

The path of a diffracted wave on the cylindrical acoustic-ealstic

interface is a helix, as shown in Figure 19, beginning at the point

of excitation. The slope of the helix is defined by the tangent to

the cylinder at this excitation point. The slope is given parame-

trically as:

(.

bdk = aztan#/Y0sineck (34)

where 6ck sin- (C/Ck), k = 1,2,3. For k = 1 use a, for

k =e2 use and fork 3 use v. For the KKdK wave the helix

slope is:

bdk = a'tan*/Ric. (35)

The length of the incident acoustic ray path for all of the dif-

fracted waves is:

Ric = (Y02 - 2aY 0sinec + a2sec 24)O (24)

where 6 and 4' satisfy the following equations for the dif-
SC

fracted waves:

L
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Diffracted wave
helical ray path

Figure 11: Diffracted wave helical ray path on the
cylinder.
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For KPdK:

W - cos- ((Y0 2 aY0cosa c + azsec
2  )/aR.)) =

sini (c/a) (36)

For KSdK:

- cos- ((Y0
2 - aY0cos8 c + a

2sec4 c)/aRi)) =

sin - (c/P) (37)

3

For KRdK:

os- 1((Y 2 -aY 0cosac + aZsec
2  )/aR.c)) =

sin- (c/Vr) (38)

S

For KK dK:

cos- ((Y0
2 - aY0cosac + a

2sec 2  )/aRic) = 7f /2 (39)

4
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The parametric equations describing the positions of the secon-

dary source points Q(tr^C) on the cylindrical acoustic-elas-

tic interface are given by:

asine (40a)

qY -acose (40b)

=atan* + b dk (a - C). (400)

The expanding radii from the secondary source points for each dif-

fracted wave-type are given by:

R(KP X) = ct- Ri - S c(e - ec )/c (41a)

R(KS dK) = ct - R ic - We( - 8 )/P (41b)

R(cR d K) =t - R ic - ~ - 0c )/vr (41c0

R(KK d K) =ci R ic - sC(8 0 C) (41d)
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where s equals the arc length of the helix for I* rotation.

W a + p2)k~ (41e)

Substituting equations (40) and (41) into equations (3) and (4) we

obtain the Substitution of equation (26) for p in equation (41e)

yields the arc length for a 10 rotation..

a = a(Y 0 sin2O) + (0.1746)2tan2 )h/Y 0 sinO (41f)

* Substituting equations (40) and (41) into equations (3) and (4) we

obtain the following wavefront and ray path parametric equations for

the diffracted waves:

For KP K*

= + A Icose ±sine(R2(KP dK) -(z.- C~ - A 12)k (42a)

70 + Alsin8O cose(R (Kpd K) - Cr- C)2 -A 2)kI (42b)



z + R(KP K) (aaR. 1 Y tanosine + 0 - e 0 (

0 d i0 0 8 0

sineO +e-eC (42c)

A 1 =(c/U)R(IKP dK) - (z,- C)tani/Y 0 sine c (42d)

Similarly to obtain the equations necessary to calculate the

wavefronts and ray paths for KS dKYIO K and KK K we need only

to substitute equations (41), along with the correct velocity in

place of a, into equations (42).

To obtain the two dimensional equations for the diffracted waves

we set *=0 in equations (33-42). Doing so we obtain:

=asinO (43a)

Y 0 acosO (43b)

S0 (43c)

ri (Y 2 + a2 -2aY cosO) (43d)
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x0 = + (rc/a)cose t rsin8(1 - c2/a2)k (44a)

Yo= i + (rc/a)sinO F rcosS(l - c2/a2)h (44b)

z 0 = 0 (44c)

r = r(KPdK) = ct - ric - (ac/a)(8 - eC) (44d)

By substituting the appropriate velocity in place of a in equa-

tions (33) they can be transformed into the equations describing the

wavefronts and ray paths for the remaining diffracted waves. The

diffracted wavefronts for all four diffracted waves are shown in

Figure 20 as computed from the above equations at t = 70 psec..

Analysis

The events labeled in the data, Figures 7, 8, 9 and 10, were picked

by calculating the arrival times of the different wavefronts at the

receivers using the simple ray theory discussed in equations 1 through

44 of the previous section. Since the velocities of the acoustic and

elastic media were known, this information was also used in the

interpretation of the arrivals of the diffracted waves. By placing
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Source
Figure 20: 2D diffracted wavefronts at t =70 usecs.
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the receivers on concentric arcs about the cylinder, the identifica-

tion of the diffracted waves is simplified because, for a given type

of diffracted wave received at two receivers on the same arc, the only

part of the ray path that changes is the path on the cylinder. Only

this segment of the entire ray path changes because the diffractedI

wave is always radiated from the cylinder at the same angle. There-

fore, the time interval between the arrival of the diffracted wave at

two receivers, e1 and 82, on the same arc can be calculated inI
the following manner:

AT = s(e8 - 82)/V (45)

where s is the helical arc on the cylinder and V is the velocity of

the diffracted wave on the cylinder. If the arrival times of the dif-

fracted events are plotted as a function of 8, then they will lie on

straight lines whose slopes will be proportional to the velocity of

the diffracted wave. This phenomenon is most easily seen in Regions I

and II as shown in Figures 7 and 8 for both 2D(coplanar) and

3D(non-coplanar) data. For non-symmetric receiver positions these

diffracted events split into front and back diffractions propagating

in both directions around the cylinder. The time interval between

arrival at the same receiver is given by

6T= 2s/v, (46)
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where s is the arc length of the helical path on the cylinder and

v is the velocity of the diffraction. Again this phenomenon is best

seen in the dats collected in Regions I and II (see Figures 7

and 8).

Interpretation and Discussion

The following events are identified in this Region I:

1.) KPK, the transmitted P wave

b2.) KPdK , the back diffracted P wave

3.) KSK, the transmitted S wave

4.) KsdKf', the front and back diffracted S waves

5. fRK ,tefotadbc ifatdRyeg ae5.) ~d

6.) K3PK, the twice internally reflected P wave

7.) KKd K f ' , the front and back diffracted acoustic waves
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8.) KP Klf'b, the first circumnavigated front and back
d

* diffracted P waves

9.) K5PK, the four time internally reflected P wave

10.) KPPSK, KPSPK, KSPPK, labeled K2PSK

11.) KPSSK, KSPSK, KSSPK, labeled KPSSK

The data for Region I, the shadow zone, are displayed in Figure 7

For this discussion the coplanar case will referred to as 2D and the

non-coplanar case as 3D. Both the 2D and the 3D data exhibit the same

phenomena. The KPK event is the first arrival followed closely by the

KP dK event. At the symmetrical receiver position 0* azimuth, the

KPK event is clearly identifiable. Since the receivers are placed on

a concentric arc about the cylinder the mov-eout of the diffracted wave

is constant(see equation (45)) and the arrivals should appear to lie

on a straight line when the arrival time is plotted as a function of

azimuth. This is easily observed in both the 2D and the 3D data (see

Figure 7). The KPdK (back diffracted P wave)event travels a lon-

ger path to arrive at receivers 50 to 30* and , therefore, arrives

later as the receiver azimuth increases. The KPdKf(front dif-

fracted P wave) event travels an increasingly shorter path to these

same receivers. However, due to the magnitude of the KPK event the

KP dKf event can not be detected. Due to this splitting, the

KPdK fb events destructively interfere at azimuth 50 for both

cases and at 10° for the 2D case. The next strong arrival is the KSK
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event. This event is very prominent but as the receiver nears the

shadow zone boundary, the KSK and the KPdKb events begin to inter-

fere. At 250 the KSK event is lost but the diffracted event is iden-

tifiable. At 300 both events are identifiable. The front and back

traveling diffractions are most observable by tracking KS K f'b and
* d

~dKRd . These events form a V as the receiver azimuth increases.

Interference between the KSK and the KSdKf events begins to occur

when the source configuration is no longer symmetric. It becomes

increasingly difficult to detect the correct arrival time of KSdKf

and at 250 this interference destroys both events creating a data

void. K3PK is easily detectable, but as the shadow zone boundary is

approached, interference with KRdK(the back diffracted Rayleigh

wave) increases. This interference is so great that it appears that

only one event arrives. As the shadow-boundary(300  azimuth) is

crossed , the KRdKf and K3PK, as well as, the KPd K and KSK

events cross and become separately identifiable again. The multiply

internally reflected mode converted transmitted waves K2PSK are evi-

dent in the time interval between K3PK and KK K. Again, the dif-

fracted acoustic wave, KKdKf, crosses K2PSK at azimuth 200 and it

also crosses K3PK and KRdK at 300 azimuth( the shadow zone boun-

f
dary). Beyond 300 azimuth, KK K is not detectable until it cir-

d

cum-navigates the cylinder. Diffractions which circum-navigate the

cylinder are detectable as evidenced by the arrival of KPdK1 fol-

lowing the KKdK event at 0 azimuth. The later arrivals consist of

KP2SK and KSPK. Other K1PmSK, KlPK and KmSK, as well as other circum-
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navigating diffractions, are extremely difficult to interpret with any

confidence so they are not.

The following events are identified in this Region II:

1.) KPK, the transmitted P wave

b2.) KPdK , the back diffracted P wave

3.) KSK, the transmitted S wave

4.) KSd K f, the front and back diffracted S waves

5.) KRd b the front and back diffracted Rayleigh waves

6.) K3PK, the twice internally reflected P wave

7.) KKKfb , the front and back diffracted acoustic waves

8.) KP Klfb the first circumnavigated front and back
d

diffracted P waves

9.) K5PK, the four time internally reflected P wave

10.) KPPSK, KPSPK, KSPPK, labeled K2PSK

11.) KPSSK, KSPSK, KSSPK, labeled KPSSK

In Region II the first phenomenon noticed is the amplitude decay of

KPK and KSK. This is not as noticeable in Region I. Each of the

other events which are identified for the shadow zone are also

observed and identified in this region. Besides these events, Region

II adds KPSK, KSPK and K to this list. The first arrival in Region II

is the KPK event. Although these reveivers are in the illuminated
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zone, diffracted P, S and Rayleigh waves are still received. The

f
KP dK event is not evident since it arrives in the time window of

KPK. The KP Kb arrival at 350 is superimposed on KSK and remains
d

unseparated from it until azimuth 500. For receivers between at azi-

muths 350 and 500, four different events are superimposed within the

time window 98.25 to 103.25 psecs., making identification of the

separate events difficult. These events are KdKb, KSK, KSdKf

f fand KRdKf. The KSd K event is not visible as a separate event
df

at 350 azimuth but KR Kf has an identifiable arrival time but no
d

ftermination point. Arriving on the tail of KRdK is the mode con-

verted events KPSK. These mode converted arrivals a.- unidentified in

the shadow zone. Another event which is non-existent in the shadow

zone , but does exist in the near shadow zone and in the remainder of

the illuminated zone, is the direct acoustic wave, K. K arrives at

receiver 350 at 112 psecs. coupled with KRdKb. At 40 , the

event arrives coupled with KS dKb and K3PK. Since the radiation

pattern of the source transducer is narrow(Figure 3), the K event is

low in amplitude and shows no evidence of its existence at 450 Pud

500. At 550, the K event arrives coupled with the mode converted

events KPSK. Throughout the near shadow region the diffracted events

KS and KR d  are identified. Mode converted events K2PSK

and KP2SK are detected and identified in this region. The KP Kif

arrival in this region displays a moveout to earlier times as the

receiver azimuth increases. It should be noted that back diffracted

acoustic waves are present in the illuminated zone, as well as, the

diffracted waves KPd fd b KS dKfbK and KR dKfb
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The following events are identified in Region III:

1.) K, the direct acoustic wave

2.) KPK, the transmitted P wave

3.) KPdKf'b , the front and back diffracted P waves

4.) K2PK, the first internally reflected P wave

5.) KSK, the transmitted S wave

6.) KS KfPb the front and back diffracted S waves

7.) Rd Kf ,b the front and back diffracted Rayleigh waves

8.) KK, the reflected acoustic wave

9.) K3PK, the second internally reflected P wave

10.) KPSK, KSPK, labeled KPSK

12.) K2SK, the first internally reflected S wave

13.) XPdKif , the first circumnavigated diffracted P wave

14.) KPSSK, KSPSK, KSSPK, labeled KPSSK

16.) K3SK, the second internally reflected S wave

17.) KPSSK, KSPSK, KSSPK, labeled KPSSK

18.) KPSSK, the mode converted P to SS wave

19.) KPSSSK, KSPSSK, KSSPSK, KSSSP, labeled KP3SK

In this region certain events are received and identified which are

not present in the shadow or the near shadow regions. Since receiver

900 and 1050 are within the reflection' region, reflected acoustic

waves, KK r, are received and since receiver 750 is outside of this

region no KK r event exists(see Figure 3). Transmitted waves with an

-
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even number of P ray paths and S ray paths without any mode

*conversions are observed at these receivers. K2PK and K2SK are uni-

dentified at receivers in the shadow and near shadow zones but they

are observed for receivers at 7500 900 and 1050 azimuth. A splitting

effect for K2PK and K2SK is evident in this region caused by internal

reflections traveling in both directions around the cylinder. On exa-

mination of the transmitted ray diagrams in Figures 16 and 17, this

effect is seen if it is remembered that these diagrams plot only one

half of the ray path and wavefront. Dual arrivals of K2PK, K2SK and

K3PK ire identified in Figure 9. Most of the observed events in this

region are combinations of events. The first arrival is a combination

fof K, KPK, KPdKf and K2PK at receiver 75o. At 900, the K event

farrives much earlier.than the combination KPK, KP K and K2PK with

such a low amplitude that it is unrecorded. At all three receivers,
Kdf Kdf

KSK, d K and K K arrive as overlapping wavelets. From

trace to trace the form of the signal changes because each of these

events has a different moveout such that they cross each other. At

1050 , both diffracted events, KSdKf and KRdK f, arrive before

KSK due to their larger moveouts as the receiver azimuth increases.

Between 116 and 120.5 psecs., the K2PK, the K3PK and the KP dKb

events arrive very close together. At receiver azimuth 900, the

KPdKb event is undetected but is reappears at 105*. K3PK arrives

at receiver 90° on the tail of the reflected acoustic, KKr . K2PK is

present on all three traces. Within the time window 123 to 128.5

psecs. at receiver 750, the KPSK events arrive simultaneously fol-

S
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lowed by a second K3PK event due to the splitting of transmitted

waves, previously mentioned. At 90°, KPSK and K3PK arrive closer

together and at 105* they combine to form a single low amplitude

event. K2SK arrives following this group at all three receivers fol-

lowed by the mode converted events K2PSK. A second K2SK event is

identified at receiver 900 at 134.5 psecs. coupled with the first

circumnavigated front diffracted P wave, KPdif. The diffracted S

wave, KSdK b, appears at all three receivers and it displays its

characteristic moveout arriving later as the receiver azimuth

increases. The back diffracted Rayleigh wave, KRdXb, is unidenti-

fiable at 750, but it is identified at 90* and 1050. It also displays

moveout. Finally, KP2 ; events are observed arriving at receiver 750

and KP3SK are observed at 900 arriving simultaneously. In this

region, the central part of the illuminated zone, more transmitted

waves are observed than in the shadow zone creating a more complicated

signal. The diffracted waves are still observed in this region.

Figures 10a and 10b displays the data for Region IV for which the

source has been moved to a distance of 6R0 from the cylinder and the

receivers are placed on a circular arc of the same radius about the

cylinder at azimuths 1200$ 1350 , 1500 and 1600 as shown in Figure 6.

This configuration covers the deep illuminated zone where backscatter-

ing predominates. Reflected acoustic waves, KKr K are the first and

most predominant of the received events in this region. The waveform

is clipped because its amplitude is much greater than the amplitude of
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the remainder of the scatterred and diffracted signal. Very little

*diffracted energy is observed in this region. The front diffracted

Lf
waves, KPdKf , KSdKf and KR Kf, arrive within the time win-

dow of the KKr event and are therefore undetectable due to the large
r

*amplitude of the reflected acoustic wave, KK r'The back diffracted

waves are undetected because they are attenuated rapidly and they

arrive in the same time windows as the larger amplitude transmitted

waves.

In Figures 10, the following transmitted waves are identified in

Region IV:

1.) K2PK

* 2.) KPSK and KSPK, labeled KPSK-

3.) K3PK

4.) KPSPK, KPPSK and KSPPK, labeled K2PSK

5.) KSSK

6.) KPPPSK, KPPSPK, KPSPPK and KSPPPK, labeled K3PSK

7.) K4PK

8.) K3SK

9.) KSPSPK, KPSSPK,KSSPPK,KPPSSK and KSPPSK, labeled K2P2SK

10.) KSSPK, KSPSK and KPSSK, labeled KP2SK

Just as the diffracted waves split into two arrivals propagating in

both directions around the cylinder, a similar splitting occurs for
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the transmitted waves. The K3PK event shows a dual arrival at 1600

overlapping each other at 190.5 psecs.. The mode converted waves

K3PK display this phenomenon on all traces with arrivals at 210.8 and

217.6 psecs. at receiver 1200. These dual arrivals become closer

together as the receiver azimuth increases as seen in Figures 10.

This backscattered region contains mostly transmitted waves

The amplitude spectra of the data have many peaks and troughs

unlike the source wavelet(see Figure 2b). Modulation of the amplitude

spectrum is caused by the multitude of arriving events within the time

window analyzed. The peaks are related to the relative arrival times

between two events The reciprocals of the peak frequencies are the

relative arrival time difference. Having already interpreted the

data, comparison of* the spectral peaks to the relative arrivals of the

data is done. Tables I and II show the correspondence between the

spectral peaks and the relative relative arrival times between events

for the 2d coplanar case at receivers 0* and 50 in the shadow zone.

Figure 29 displays the spectra for receivers 00 and 50 for the data

presented in Tables I and II.

CONCLUSIONS

A three dimensional model experiment has been performed to study

the acoustic-elastic wave scattering and diffraction of a transient

acoustic wave emitted from a point source by an infinite elastic cyl-

inder embedded in a fluid medium. This is the first three dimensional

-
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model experiment using multiple receiver positions throughout all of

the scattering regions. The data verify the existence of KPK, KSK,

K2PK, K2SX, KPSK, KP2SK, K2PSK, K3PK, K3SK, K3PSK, KP3SK, KSPK, K,

KK r KPdf'bK, KPdifK, KSdfibK, KRdfibK, KKd fbK

and those transmitted converted waves which have the same number of P

and S wave ray segments interior to the cylinder as those stated here.

The verification of the existence of KPd fbK, KSd fbKO

KRdf'K, KKdf'b K, KP ifK in three dimensions and of

KP dfbK and KS df'b K in two dimensions is accomplished for the

first time. It is also for the first time that all of the diffrac-

tions and all of the transmitted waves have been shown together on the

same data trace so that their interaction could be discerned. By

establishing the existence of the various transmitted and diffracted

waves for a non-coplanar(three dimensional) source-receiver configura-

tion, the verification of the helical path traced on the cylindrical

surface by the various as predicted by theory is accomplished. It is

also shown that the diffractions due propagate into the shadow zones

due to the fact that they propagate in all directions around the the

cylinder. Through spectral analysis the spectral maxima are shown to

correspond to the relative arrival time separartion between various

events. The non-abrupt nature of the acoustical shadow boundary is

shown by use of the complex cepstrum. The maximum phase component of

the cepstrum becomes greatly changes in the vicinity of the geometri-

cal shadow boundary. If the geometrical shadow zone is being entered

then the negative cepstrum becomes more complicated and the terms
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increase in amplitude. However, upon leaving the geometrical shadow

the negative cepstrum decreases in complexity and the amplitude of the

terms decrease also. Envelope detection is employed to determine the

arrival times and the duration and the duration of the arriving

* events. From the envelope detection method the contamination of arri-

vals due to overlapping is readily seen. Homomorphic filtering is

used to attempt to remove the wavelet effects and decouple the over-

lapping events, but it does not perform satisfactorily since the con-

tamination is by more than one or even two events in most instances.

$
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